DATA HANDBOOK

Varistors, Thermistors and Sensors

Philips Components

PHILIPS

VARISTORS, THERMISTORS AND SENSORS

	Page
Selection guide	5
Negative Temperature Coefficient (NTC) thermistors	
Introduction	11
How to measure NTC thermistors	18
Choice of type.	19
	20
Glossary of terms Applications	20 21
Device data	35
Positive Temperature Coefficient (PTC) thermistors	
	1.51
Introduction	151
Explanation of terms.	163
How to measure PTC thermistors	167
Applications	168
Device data	185
Varistors (VDR)	
Introduction	341
Varistor manufacturing process	342
Quality	344
Definitions	345
Electrical characteristics	347
Transient voltage limitation with ZnO varistors	351
Surge protection	360
Varistor applications	362
Selection of the correct varistor type	367
Device data	371
Light Dependant Resistors (LDR) and Humidity Sensor	
General	397
Survey	398
Light Dependant Resistors (LDR)	399
Humidity Sensor	405

For easy reference, catalogue numbers (12 digits) are at the top of each page. Orders should always state the 12-figure catalogue number.

All dimensions on drawings are in mm unless otherwise indicated. According to the S.I. units the symbol K (Kelvin) is used instead of ${}^{\circ}$ C in combinations such as K/W. Also Δ T is in K. Atmospheric pressure is given in kPa instead of millibars, mm Hg, etc. 1000 mbar = 100 kPa.

Some devices are labelled "Maintenance Type". The relevant components are available for equipment maintenance only and are no longer recommended for equipment production.

Of those types labelled "DEVELOPMENT DATA" the specifications are subject to change without notice.

SELECTION GUIDE

NEGATIVE TEMPERATURE COEFFICIENT (NTC) THERMISTORS

PRODUCT FUNCTION	RANGE	OUTLINE	ORDERING CODE	PAGE
Temperature sensing and control	Basic	Radial leads Radial leads Radial leads Radial leads	2322 640 5 2322 640 6 2322 642 6 2322 645 series	69 73 109 129
	Special accuracy	Radial leads Radial leads Radial leads Moulded Moulded with metal strip Screw Steelcap Radial leads Radial leads Moulded with metal strip Screw Steelcap Radial leads Moulded with metal strip Screw Steelcap Radial leads Radial leads Radial leads	2322 633 90001 2322 640 10 2322 640 90012 2322 640 90013 2322 640 98013 2322 640 97013 2322 640 95013 2322 640 90031 2322 645 90001 2322 645 98001 2322 645 95001 2322 645 95001 2322 645 90015 2322 645 90022	63 65 97 97 97 97 105 135 135 135 135 139
	Assembly	Moulded Moulded with metal strip Moulded Moulded with metal strip Steelcap Steelcap Steelcap Long and insulated leads Screw Radial leads	2322 640 90004 2322 640 98004 2322 640 90005 2322 640 98005 2322 640 90024 2322 640 90025 2322 640 90034 2322 640 90056 2322 642 7	87 87 91 91 101 101 107 115 147
	High temperature	SOD27	2322 633 72224 2322 633 73224	59 59
	Miniature	Glass encapsulated bead with radial leads Bead with axial leads Bead with axial leads Glass encapsulated bead with axial leads	2322 626 1 2322 626 2 2322 633 0 2322 633 1 2322 633 2	43 47 51 51 55
	Naked disc	Disc	2322 611 9	39
Temperature compensation	Basic	Radial leads Radial leads	2322 640 6 2322 645 series	73 129
Surge current	1 Watt	Radial leads	2322 610 1	35
limiting	Low power	Radial leads	2322 642 6	113
	High current	Radial leads	2322 644 90005 to 90026	119
	Disc without leads	Disc	2322 644 90012	127

SELECTION GUIDE

POSITIVE TEMPERATURE COEFFICIENT (PTC) THERMISTORS

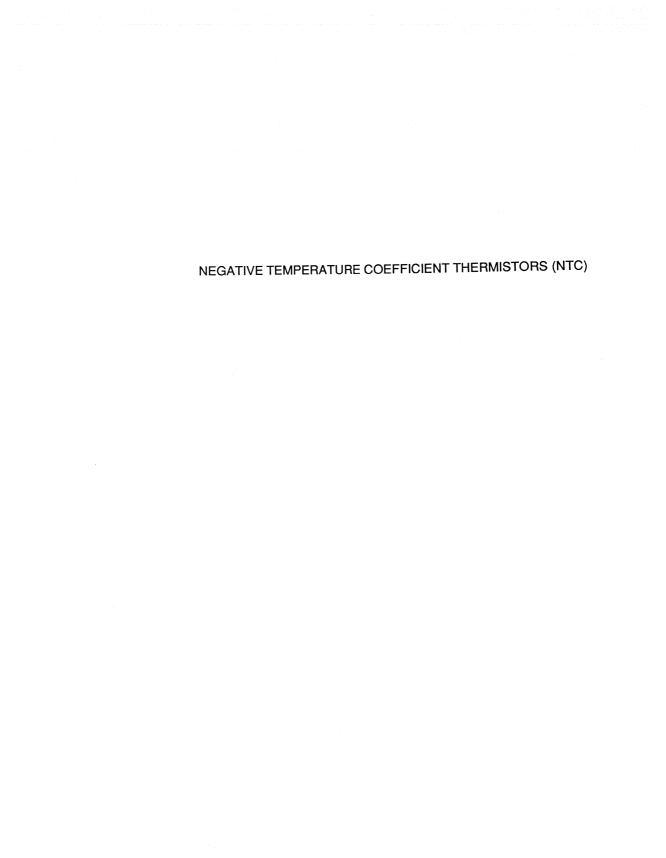
PRODUCT FUNCTION	RANGE	OUTLINE	ORDERING CODE	PAGE
Heating	See overview	Rectangular, circular		185
Degaussing	Mono	Radial leads	2322 662 93702	229
		Plastic housing	2322 662 96176	263
	Dual	Plastic housing	2322 662 96009	231
		Plastic housing	2322 662 96011	233
		Plastic housing	2322 662 96012	235
		Plastic housing	2322 662 96013	237
		Plastic housing	2322 662 96016	239
		Plastic housing	2322 662 96022	241
		Plastic housing	2322 662 96024	243
		Plastic housing	2322 662 96025	245
		Plastic housing	2322 662 96111	247
		Plastic housing	2322 662 96116	249
		Plastic housing	2322 662 96118	251
		Plastic housing	2322 662 96122	253
		Plastic housing	2322 662 96123	255
		Plastic housing	2322 662 96124	257
		Plastic housing	2322 662 96125	259
		Plastic housing	2322 662 96126	261
Overload protection	Basic	Radial leads	2322 660 0 1	287
		Radial leads	2322 660 03	269
		Radial leads	2322 661 0 1	287
		Radial leads	2322 661 0 3	269
		Radial leads	2322 662 0 1	287
		Radial leads	2322 662 0 3	269
		Radial leads	2322 663 0 1	287
		Radial leads	2322 663 0 3	269
		Radial leads	2322 664 0 1	287
		Radial leads	2322 664 03	269
	-	Naked disc	2322 660 11	269
		Naked disc	2322 660 13	287
		Naked disc	2322 661 11	269
		Naked disc	2322 661 13	287
		Naked disc	2322 662 1 1	269
		Naked disc	2322 662 13	287
		Naked disc	2322 663 1 1	269
	-	Naked disc	2322 663 13	287
		Naked disc	2322 664 1 1	269
		Naked disc	2322 664 13	287
		Radial leads	2322 660 9	311
		Radial leads	2322 661 9	311
		Radial leads	2322 662 9	311
		Radial leads	2322 663 9	311
		Radial leads	2322 664 9	311
		Radial leads	2322 660 91001	189
		Radial leads	2322 660 91006	193
			to 91009	

POSITIVE TEMPERATURE COEFFICIENT (PTC) THERMISTORS (continued)

PRODUCT FUNCTION	RANGE	OUTLINE	ORDERING CODE	PAGE
Overload protection	Basic	Radial leads Radial leads	2322 660 93001 2322 661 91002 to 91005	201 205
		Radial leads Naked disc	2322 662 91001 2322 662 93006	211 215
		Radial leads Radial leads	2322 662 93036 2322 662 93066	219 223
		Radial leads Radial leads	2322 664 91086 2322 672 91016	265 311
		Radial leads	2322 672 93003	311
	TPE	DO7 Plastic housing	2322 670 90003 2322 672 98001	333
	Small	Radial leads or disc	2322 672 91002 to 91035	317
	Motor protection	Insulated leads	2322 672 92045 to 92053	325

VARISTORS (VDR)

PRODUCT FUNCTION	RANGE	OUTLINE	ORDERING CODE	PAGE
Transient suppression	Basic	Available in: Straight leads Kinked leads Flanged leads	2322 592 series 2322 593 series 2322 594 series 2322 595 series	371 371 371 371
		On tap In ammopack Bulk		


LIGHT DEPENDANT RESISTORS (LDR)

PRODUCT FUNCTION	RANGE	OUTLINE	ORDERING CODE	PAGE
Switching	Basic	Sealed housing	2322 600 93001 2322 600 93002	399 399
		Sealed housing	2322 600 94001	401
		Sealed housing	2322 600 95	403

HUMIDITY SENSOR

PRODUCT FUNCTION	RANGE	OUTLINE	ORDERING CODE	PAGE
Sensing	Basic	Housing	2322 691 91001	405

INTRODUCTION

Definition and composition

Negative temperature coefficient thermistors (NTCs) are resistive components, of which the resistance decreases as temperature increases. They are made from polycrystalline semiconductors, the compositions of which are a mixture of chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co) and nickel (Ni).

Manufacture

The manufacturing process is comparable to that of ceramics. After intensive mixing and the addition of a plastic binder, the mass is shaped into the required form, e.g. extrusion (rods) or pressing (discs), and fired at a temperature high enough to sinter the constituent oxide. New technologies have led to the sawing of isostatic pressed wafers, the compositions of which are very stable with, as a result, high accuracy and high reproducibility.

Electrical contacts are then added by burning them in with silver paste or by other methods, such as evaporation. Finally, leads (isolated or not), are fitted. Different encapsulations are possible, depending on the size of the ceramic and the application of the component.

Miniature NTC thermistors are made by placing a bead of oxide paste between two parallel platinum alloy wires and then drying and sintering. The platinum alloy wires are $60 \, \mu \text{m}$ in diameter and spaced 0.25 mm apart. During sintering, the bead shrinks onto the wires to make a solid and reliable contact. Miniature NTC thermistors are usually mounted in glass to protect them against aggressive gases and fluids.

Relationship of resistance with temperature

The conductivity (σ) of a material is its capacity to drive a current when a voltage is applied to it. As the current is driven by carriers that are free to move (i.e. which are not bound to atoms), then it follows that the conductivity will be proportional to the number of carriers (n) that are free and also to the mobility (μ) that those carriers can acquire under the influence of electrical fields. Thus:

$$\sigma = ne\mu$$

where e is the unit of electrical charge stored by each carrier.

Both n and μ are functions of temperature. For μ , the dependance on temperature is related to the interactions of a carrier with other carriers and with the total net amount of vibrating atoms, the vibration varying with temperature. It can be shown that:

$$\mu \alpha e^{-q2/kT/T}$$

For n, the dependance on temperature can be explained in the following way: electrons are bound to atoms by certain energies. As one gives the electron an energy equal to, or greater than, the binding energy (e.g. by raising its temperature), there is a probability that the electron will become free to move. As for many semiconductors, this probability has the form of the well known Maxwell-Boltzmann distribution. Thus:

nαe-q1/kT

INTRODUCTION TO NTC's

Relationship of resistance with temperature (continued)

The total temperature dependence of the conductivity is:

$$\sigma = T - c_e - (q_1 + q_2)/kT$$

In practice, the exponential factor is the most important. Remembering that resistivity is the inverse of conductivity, the following can be derived:

$$R = A e^{B/T}$$
 or $log R = A + (B/T)$

where A and B are parameters depending on each component (resistivity and shape).

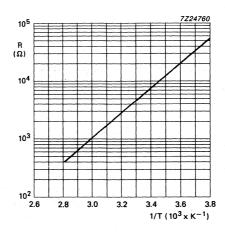


Fig.1 Resistance (in ohms) as a function of inverse of temperature (in 10³ x K⁻¹) for a typical NTC.

Shape of a NTC curve and determination of B value

In Fig.1, resistance is plotted as a function of the inverse of temperature. Even in semi-log scale, it can be seen that this curve is not a straight line. This is due to the fact that A and B are not perfectly constant with temperature. However, over a wide range of temperatures, it may be assumed that these parameters are constant.

If this range is defined between T_1 and T_2 , and it is assumed that the curve on this range could be approximated with a straight line, the slope of which will be B, this last value between T_1 and T_2 may be found as follows:

The resistance value is measured at T₁ and T₂.

$$R_1 = A e^{B/T_1}$$
 and $R_2 = A e^{B/T_2}$

Dividing yields:

$$R_1/R_2 = e(B/T_1 - B/T_2)$$

or:

$$\log R_1 - \log R_2 = B (1/T_1 - 1/T_2) \log e$$

solving for B gives:

$$B = \frac{1n R_1/R_2}{1/T_1 - 1/T_2}$$

In practice, B varies slightly with increasing temperature.

The temperature coefficient of a NTC may be derived from:

$$\alpha = 1/R \cdot dR/dT = -B/T2$$

For the different materials, the constant B may vary between 2000 and 5500 K; e.g. a value of 3600 K yields $\alpha = -4\%$ per K at a temperature of 300 K.

A and B are assumed to be constant between T_1 and T_2 (BT1/T2)

In practice, most NTC's are specified with a reference value at 25 °C and a constant B value between 25 °C and 85 °C. For commodity reasons, the curves printed in this handbook show the resistance as a function of temperature, instead of its inverse.

V/I characteristics

Figure 2 shows the relationship between current and voltage drop through the NTC thermistor heated by this current to a temperature much higher than the ambient temperature.

With very small values of current, it can be seen that the curve remains straight, following an isoresistive line. Remembering that an isoresistive line is in fact an isothermal line (R = fct[T]), it indicates that the power consumption is too small to register a distinct rise in temperature.

For higher current intensities, the temperature rises by Joule effect (P = VI). The equilibrium temperature is reached when the power dissipated by the NTC is in equilibrium with the power applied to it. It can be seen that as the dissipated power is dependent on the environment, the equilibrium will also depend on it and thus the V-I characteristic also. The characteristic shown in Fig.2 was measured at a constant ambient temperature after equilibrium had been reached.

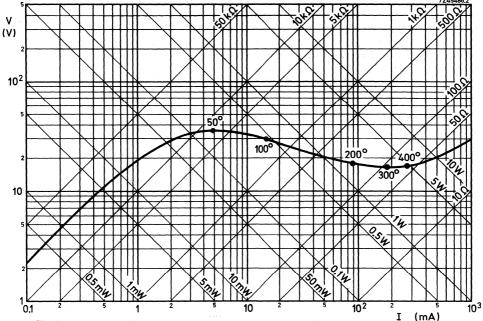


Fig. 2 Voltage as a function of the current characteristics of an NTC thermistor. Assuming:

- (A) a constant temperature throughout the body of the thermistor;
- (B) the heat transfer to be proportional to the difference in temperature between the thermistor and the surrounding medium (which is true for low temperatures).

INTRODUCTION TO NTC's

V/I characteristics (continued)

In case of equilibrium:

$$W = VI = \delta(T - T_0)$$

in which T_0 is the ambient temperature and δ the dissipation factor (defined in the following paragraph).

From this relationship, it is obvious that the temperature of the component will be that of its surroundings if the power applied to the component (W) is equal to zero (power off value). If the applied power is not very small (< 0.01 W), then T is no longer equal to T_0 and will be strongly dependent on δ (power on conditions).

Because it is not possible to define δ without any doubt, (δ is not dependent on the component itself, but also on special housing, if any, convection, turbulence, etc.), all components are specified with their power off values.

To choose a component that will be used in a 'power on' application, it is necessary to determine δ in that application.

SPEED OF RESPONSE

Thermal Time Constant

The thermal time constant is an indication of the time that a component needs to reach thermal equilibrium. This constant depends on two important parameters.

One is the thermal capacity (H) of the component, i.e. the energy that must be applied to the component in order to raise its temperature by 1 Kelvin (or the energy that the component must lose in order to lower its temperature by 1 Kelvin). The units are thus quoted in Joules/Kelvin. The second parameter is called the dissipation factor (δ). If the temperature of a component rises, it will tend to dissipate energy. This dissipation will depend on the surroundings and also on the component itself. The dissipation factor is defined as the ratio of the change in power dissipation with respect to the resultant body temperature change (units in W/K).

If a step change in temperature is applied to a component e.g. from high (T₁) to low (T₀) temperature, the energy lost by the component (-HdT) is equal to the energy dissipated by it $(\delta[T-T_0]dt)$.

$$-HdT = \delta(T-T_0)dt$$

This equation yields:

$$T-T_1 = (T_0-T_1)e^{-t/\tau}$$

where the thermal time constant (τ) is defined as the ratio of the heat capacity (H) of the thermistor with respect to its dissipation factor (δ) .

The temperature value when the time elapsed is $(t = \tau)$ is given in the formula:

$$T - T_0/T_1 - T_0 = (1 - e^{-1}) = 0.632$$

This equation gives the following definition:

The thermal time constant is the time required for the temperature of a thermistor to change by 63.2% of the difference between its initial and final body temperatures (in accordance wit IEC 539; 85 °C and 25 °C respectively), when subjected to a step function temperature change.

It is entirely dependent on the component design. The thermal time constant depends on δ , which varies for different media.

The thermal time constants referred to in the data sheets are measured as follows, the method used depending on the application:

- by cooling in air under zero power conditions (T_c)
- by warming or cooling, transferring the thermistor from ambient temperature of + 25 °C to a bath with a fluid with a higher or lower temperature under zero power conditions (T_r, termed 'response time' in the data sheets).

Tolerances on the Nominal NTC Specification

As already mentioned, an NTC thermistor is normally specified by giving a reference value (generally R₂₅) and the B value (B_{25/85}). Unfortunately, the manufacturing process dictates that identical components cannot be guaranteed, so there are some tolerances.

These tolerances can mean an upward or downward shift in the resistance value, equal at all temperatures due to, for example, soldering tolerances. The entire curve moves equally up or down:

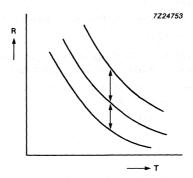


Fig.3 Effect of soldering as a function of resistance against time.

This tolerance is usually indicated by giving the shift at the reference temperature, so for example, R_{25} = 10 k Ω ± 5%.

A tolerance also exists on the slope of the curve. Because the B value is an indication of that slope, it is normally indicated as a tolerance on B_{25/85}. This is covered mainly by variations in the material composition and the effect of sintering on the material.

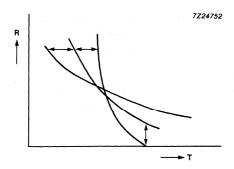


Fig.4 Effect of sintering on resistance against time.

The effect of the slope or the B-value deviation on the resistance at several temperatures can be calculated.

INTRODUCTION TO NTC's

Tolerances on the Nominal NTC Specification (continued)

The fundamental equation of a NTC is:

$$R_n(T) = R_{ref} B(1/T - 1/T_{ref})$$

where R_n and B are nominal values (specified values without any tolerance).

If B is not a nominal value, it is expressed as:

$$R(T) = R_n(T) + \Delta R(T) = R_{ref} e^{(B + \Delta B)(1/T - 1/T_{ref})}$$

where $\Delta R(T)$ is the absolute deviation at temperature T.

$$\Delta R(T) = R_{ref} [e (B + \Delta B) (1/T - 1/T_{ref}) - e B(1/T - 1/T_{ref})]$$

If relative deviation is applied:

$$\Delta R(T)/R_{n}(T) = e^{\Delta B(1/T - 1/T_{ref})} - 1$$

Developing this equation (Taylor's formulae), the following simplified expression can be derived:

$$\Delta R(T)/R_n(T)$$
 (in %) = ΔB (1/T - 1/T_{ref})

This calculation has been performed for all the major sensor ranges to be found in this handbook, where 'R deviation due to B tolerance' values can be found in the data tables.

If the R deviation due to B tolerance, is called 'Y' and the tolerance at the reference temperature 'X', then the total tolerance can be calculated as:

$$Z = [(1 + X/100) \times (1 + Y/100) - 1] \times 100$$

or, Z = X + Y (approximation)

If TC = temperature coefficient and ΔT = temperature deviation,

 $\Delta T = Z/TC$

Example: at 0 °C, let X = 5%, Y = 0.089% and TC = 5.08%/K, then:

$$Z = \{[1 + (5/100)] \times [1 + (0.89/100)] - 1\} \times 100$$

= $\{1.05 \times 1.0089 - 1\} \times 100 = 5.9345 \text{ or } 5.93\%$

$$\Delta T = Z/TC = 5.93/5.08 = 1.167 \text{ or } 1.17 \text{ }^{\circ}C$$

Hence, a NTC having a R₂₅ value of 10 k Ω has a value of 32.51 k Ω between + 1.17 °C and -1.17 °C.

Resistance specified at more than one temperature (2 or 3-point sensors)

Thermistors which are specified at 2 or 3 points of their R/T characteristic are more accurate. They have a closer tolerance and the spread in B-value has less influence because it is included in the tolerance at the specified points.

The tolerances in the reference points can be expressed either as a temperature deviation for the reference resistance or as a resistance tolerance at the reference temperature. This has no influence on the resulting measuring error which is minimal in the temperature region between the reference points, as illustrated in Fig.5.

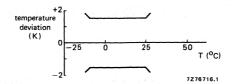


Fig.5 Temperature measurement at more than one point.

The 2 or 3-point sensors are particularly suited for applications with the following characteristics:

- -- temperature measurement over a certain temperature range
- high accuracy
- no further calibration for sensor tolerances in the electrical circuitry required.

HOW TO MEASURE NTC THERMISTORS

The published RT values are measured at the temperature T.

The published B-value at 25 °C is the result of a measurement at 25 °C and one at 85 °C, hence these values should be used when checking.

The following general precautions have to be taken when measuring NTC thermistors:

- Never measure thermistors in air, this is quite inaccurate and gives deviations of 1 or 2 K. For measurement at room temperature or below, use petrol or some other non-conductive and non-aggressive fluid. For higher temperatures use oil, preferably silicon oil.
- Use a thermostat with an accuracy of better than 0.1 °C. Even if the liquid is well stirred, there is still a temperature gradient in the fluid. Measure the temperature as close as possible to the NTC.
- After placing the NTC in the thermostat, wait until temperature equilibrium between the NTC and the fluid is obtained. For some types this may take more than 1 minute.
- Keep the measuring voltage as low as possible otherwise the NTC will be heated by the measuring current. Miniature NTC thermistors are especially sensitive in this respect. Measuring voltages of less than 0.5 V are recommended.
- For high temperature measurements it is recommended that stem correction be applied to the thermometer reading.

CHOICE OF TYPE

When selecting an NTC thermistor the following main characteristics should be considered:

- Resistance value(s) and temperature coefficient
- Accuracy of resistance value(s)
- Power to be dissipated
 - (a) without perceptible change in resistance value due to self heating
 - (b) with maximum change in resistance value
- Permissible temperature range
- Thermal time constant, if applicable
- Types best suited to the purpose: basic forms are rod, disc and bead
- Protection against undesired external influences, if necessary.

When it is impossible to find an NTC thermistor to fulfil all requirements, it is often more economical to adapt the values of other circuit components to the value of a series-manufactured NTC. Sometimes, a standard NTC can be used with simple parallel and series resistors where otherwise a special type would have been necessary.

If no suitable combination can be found, the development of a special type can be considered. In this case a specification of the requirements is necessary. A description of the circuit in which the NTC has to be used is most useful.

Deviating characteristics

The following example explains the resistance values resulting from combinations of NTC with normal resistors.

Suppose an NTC must have a resistance of 50 Ω at 30 °C and 10 Ω at 100 °C. A standard type having this characteristic is not included in our programme. The problem may, however, be solved by using a standard NTC and two fixed resistors if a NTC disc with a cold resistance of 130 Ω is mounted in a series and parallel arrangement with two fixed resistors of 6 Ω and 95 Ω . It should be remembered that the temperature coefficient of the combination will always be lower than that of the NTC thermistor alone.

Remarks on the use of NTC Thermistors

Do not use unprotected thermistors in conducting fluids or aggressive and reducing gases which may cause a change in thermistor characteristics.

For temperature measurements do not use too high a voltage on the NTC thermistor as self-heating may cause incorrect readings. The dissipation constant indicates the maximum permissible measuring power, if an error of 1 °C is allowed.

GLOSSARY OF TERMS

Resistance

Also called nominal resistance. Formerly specified at only one temperature, or sometimes at two or maximum three. Now new technologies allow the specification of resistance values on all application ranges for several types.

Tolerance on resistance

The limits of the values that the resistance can take at the reference temperature.

B value

The B value may be calculated using the following formula:

$$\frac{\ln R_1/R_2}{1/T_1 - 1/T_2}$$

where R₁ and R₂ are the nominal values of resistance at T₁ and T₂.

Tolerance on B value

The limits of the value that B can take due to the process variations.

R tolerance due to B deviation

Due to the tolerance on the B value, the limits of the value that R can take at a certain temperature increase with the difference of that temperature to the reference temperature.

Tolerance on R at a temperature different to Tref

The sum of the tolerances on resistance and tolerance due to B deviation.

α value

Variation of resistance (in %) for small variations of temperature around a defined temperature.

Maximum dissipation

Maximum power which could be applied without any risk of failure.

APPLICATIONS

Applications of NTC's may be classified into three main groups depending on their physical properties:

(1) Applications in which advantage is taken of the dependence of the resistance on the temperature, shown in the formula:

$$R = f(T)$$

This group is split into two sub sections:

- (a) The temperature of the NTC thermistor is determined only by the temperature of the ambient medium (or by the current in a separate heater winding).
- (b) The temperature of the NTC thermistor is also determined by the dissipation in the NTC thermistor itself.
- (2) Applications in which the time dependence is decisive. In that case the temperature is considered as a parameter, and is written:

$$R = f(t)$$

This group comprises all applications which make use of the thermal inertia of NTC thermistors.

(3) The third group of applications uses mainly the property of the temperature coefficient being highly negative:

$$\alpha < 0$$

Also in this group, applications are listed which take advantage of the fact that the absolute value of the temperature is so high, that a part of the V = f(I) curve shows a negative slope.

The classifications given above are supported by practical examples in Figs 6 to 29.

INTRODUCTION TO NTC's

APPLICATION EXAMPLES

Application (1) (a) - Temperature sensing

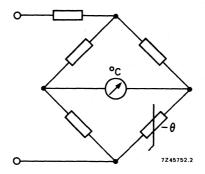
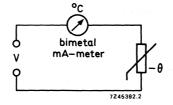



Fig.6 Temperature measurement in industrial and medical thermometers.

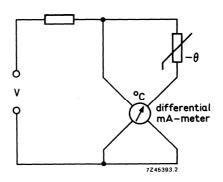


Fig. 7 Temperature measurement in cars. Cooling water measurements with bimetal or differential milliammeters.

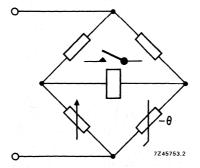


Fig.8 Temperature measurement with a bridge incorporating an NTC thermistor and a relay or a static switching device.

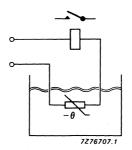


Fig.9 Liquid level control.

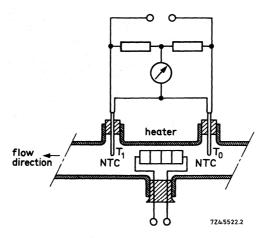


Fig.10 Flow measurement of liquids and gases. The temperature difference between T_1 and T_0 is measured for the velocity of the fluid.

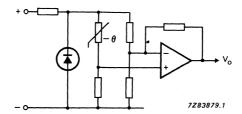


Fig.11 Temperature sensing bridge with amplifier. The op-amp acts as differential amplifier. The sensitivity can be very high.

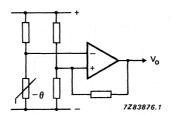


Fig.12 Basic temperature sensing configuration. The operational amplifier, e.g. type NE532, acts as a Schmitt trigger. The transfer characteristic is shown in Fig.13.

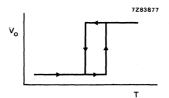


Fig.13 Transfer characteristic of circuit shown in Fig.12.

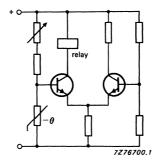


Fig.14 Simple thermostat.

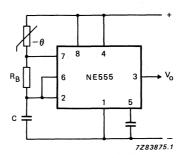


Fig.15 Temperature controlled oscillator. This is a simple interface circuit for digital and microcomputer-controlled systems. The frequency of the output pulses is proportional to the temperature of the NTC thermistor. See Fig.16.

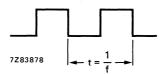


Fig.16 Characteristic of circuit shown in Fig.15.

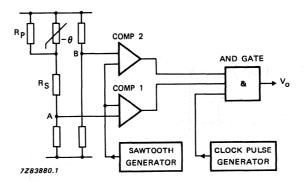


Fig.17 Temperature sensing bridge with 0 $^{\circ}$ C offset and analogue to digital conversion. Due to R_p and R_s the voltage at point A varies linearly with the temperature of the NTC thermistor. The voltage at point B is equal to the voltage at point A when the temperature of the NTC thermistor is 0 $^{\circ}$ C. Both voltages are fed to the comparator circuit. See also Fig.18.

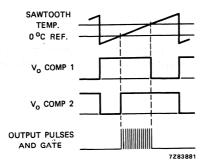


Fig.18 Characteristic of circuit shown in Fig.17.

Application (1) (b) - Limiting

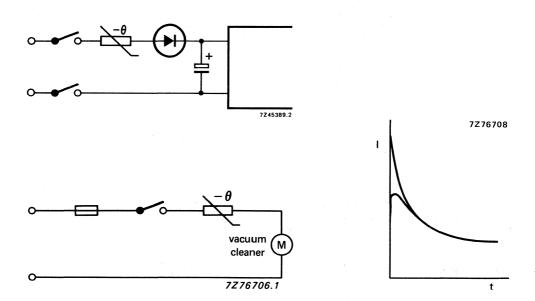


Fig.19 Inrush current limiter. e.g. for protection of Si-diodes (allowing similar types to be used), fuses and switches.

Application (2) - Timing

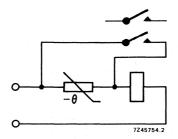


Fig.20 Delaying action of relays. Due to the thermal inertia of the NTC, it takes some time before the relay is activated. If necessary the NTC can be short-circuited after the relay is activated thus leaving the NTC time for cooling.

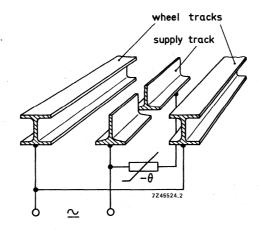


Fig.21 Model trains. As soon as the train comes on the isolated supply trip, it stops. The NTC heats up and gradually the train starts again.

INTRODUCTION TO NTC's

Application (3) - Compensation

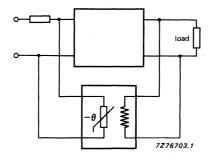


Fig.22 Gain compensation or gain control with an indirectly heated NTC.

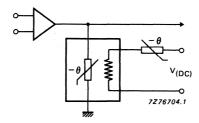


Fig.23 Compensation for the influence of ambient temperature variations in an h.f. amplifier.

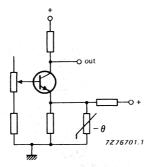


Fig.24 Stabilization with temperature of an a.g.c. amplifier in a television set.

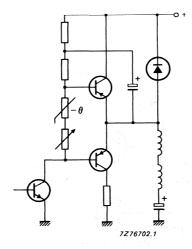


Fig.25 Compensation of drift in field deflection coils. The influence of the positive temperature coefficient of the copper windings is compensated by means of an NTC thermistor.

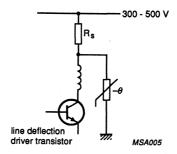


Fig.26 Constant current (sure start-up) for line deflection stage.

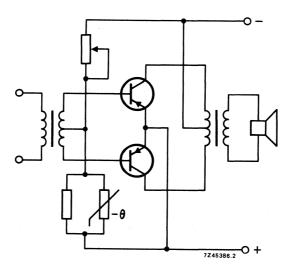


Fig.27 Temperature compensation in transistor circuits. Push-pull compensation.

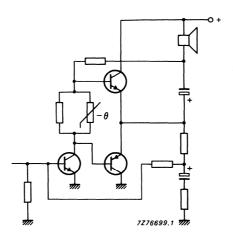


Fig.28 Transformerless audio output stage with temperature compensation.

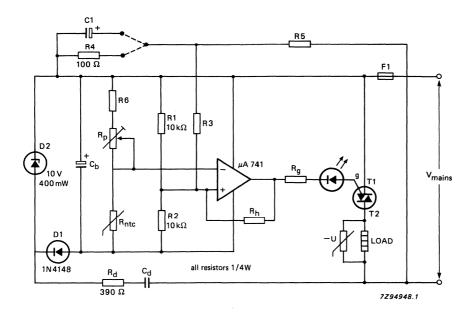


Fig.29 Thermostat for room temperature control.

NTC THERMISTORS

low power 1 Watt range

Features

Cost effective

Thermistor for surge current limiting under low power dissipation conditions

SURGE CURRENT LIMITING

QUICK REFERENCE DATA

Resistance value at +25 °C	4 to 33 Ω
B ₂₅ /85-value	2800 to 3250 K
Maximum dissipation	1 W
Dissipation factor	10 mW/K
Thermal time constant	60 s approx.
Operating temperature range at zero power at maximum power	-25 to + 125 °C 0 to +55 °C

DESCRIPTION

Disc thermistor with negative temperature coefficient with two tinned copper wires. It is not lacquered, not insulated and has a colour code.

MECHANICAL DATA

Outlines

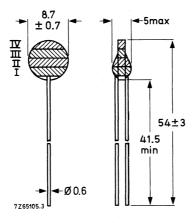


Fig.1 Component outline.

2322 610 1.... **LOW POWER** 1 WATT RANGE

Marking

The thermistors are marked with three colour bands showing their resistance value (R₂₅) in code as indicated in Table 1. Thermistors with a tolerance on R25 of 10% have a fourth band coloured silver.

Mass

1.0 to 1.3 grams

Mounting

In any position by soldering.

Robustness of terminations

Tensile strength

Bending

Soldering

Solderability

Resistance to heat

PACKAGING

250 thermistors in a cardboard box.

ELECTRICAL DATA

Maximum dissipation *

Dissipation factor *

Thermal time constant *

Heat capacity *

Operating temperature

at zero power

at maximum power

10 N

5 N

max. 240 °C, max. 4 s

max. 265 °C, max. 11 s

1 W

10 mW/K approx.

60 s approx.

0.6 J/K approx.

-25 to +125 °C 0 to +55 °C

^{*} Measurements made in still air, between two phosphor-bronze wires (ϕ 1.3 mm).

Table 1 Catalogue numbers 2322 610 1.....

uffix of catalogue number		R ₂₅	B _{25/85}	temperature	ature co		lour code	
tol.	tol.		± 5%	coefficient				
± 10%	± 20%	Ω	K	%/K	1	11	111	
2408	1408	4	2800	-3.15	yellow	black	gold	
2808	1808	8	2900	-3.25	grey	black	gold	
2159	1159	15	3125	-3.40	brown	green	black	
2339	1339	33	3250	-3.65	orange	orange	black	

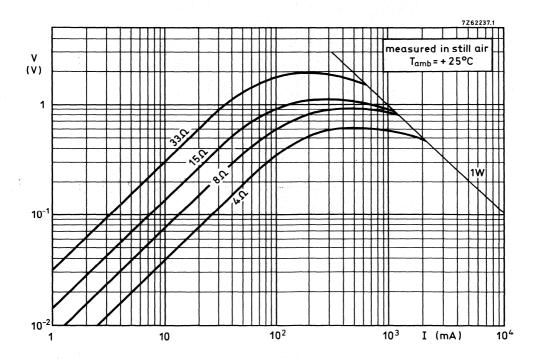


Fig.2 Typical voltage/current characteristics.

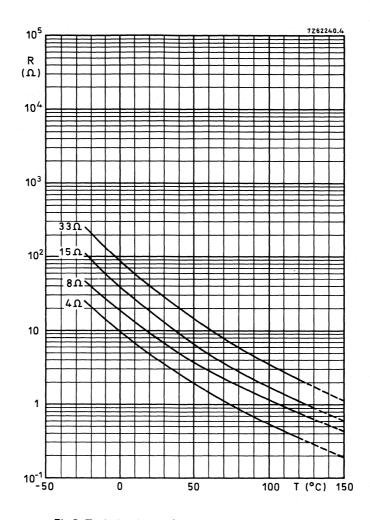


Fig.3 Typical resistance/temperature characteristics.

NTC THERMISTOR

naked disc range

Features

- Low price
- Proven quality

TEMPERATURE SENSING AND CONTROL

QUICK REFERENCE DATA

Resistance value			see Table 1
B _{25/85} value			see Table 1
Temperature coefficient			see Table 1
Dissipation factor			see Table 1

APPLICATION

Temperature sensing of coolant in motor cars. The thermistors are normally used under power on conditions (power causing self-heating of the NTC).

DESCRIPTION

Disc thermistors (without leads) having a negative temperature coefficient.

MECHANICAL DATA

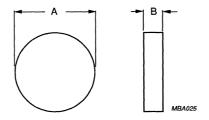


Fig.1 Component outline; see Table 1 for dimensions.

RANGE INFORMATION

Climatic category
Packaging

25/125/56 1000 pieces

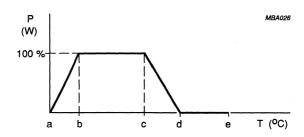



Fig.2 Derating curve; see Table 1 for curve values.

Table 1 Type information 2322 611 900 . .

Resistance at (Ω)	90025	90027	90028	90035	90036	90037	90039
-20 °C					6480 ± 1000		
0 °C				1	2450 ± 320		
20 °C					1040 ± 118		
25 °C	2100 (*)	930 ± 10%		2577 (*)	845 (*)	562 (*)	930 (*)
40 °C			304.5 ± 8.8%		488 ± 40		
54.5 °C				754.5 ± 5%			
60 °C	520 ± 60				245 ± 20	167 ± 9.7%	268 ± 9.5%
90 °C					102 ± 6		
100 °C	144 ± 10	84.5 ± 7%	39.6 ± 5%			52.5 ± 7.5%	84.5 ± 7%
110 °C				121.6 ± 3%			
120 °C			23 ± 8%		47.5 ± 3	31.3 ± 6%	100
140 °C	48 ± 4						
B _{25/85} (K)	3977 (*)	3600 (*)	3950 (*)	4093 (*)		3500 (*)	3550 (*)
Temperature coefficient (approx.) (%/K)	-4.4	-4.05	-4.44	-4.6		-3.8	-4
Derating curve max. dissipation (W)	0.5	0.25	0.25	0.5	0.5	0.3	0.25
a (^O C)	-55	-25	-30	-55	-40	-40	25
b (°C)	-25	-25	-25	-25	-25	-25	-25
c (^O C)	55	55	55	55	55	55	55
d (°C)	85	85	85	85	85	85	85
e (^O C)	155	125	155	125	125	125	125
Weight (approx.) (grams)	0.15	0.15	0.14	0.1	0.11	0.09	0.1
Outline A (mm)	4.7 ± 0.2	4.7 ± 0.2	4.7 ± 0.2	5.2 - 0.3	4.4 ± 0.3	4.7 ± 0.2	4.4 ± 0.3
Outline B (mm)	1.2 ± 0.3	1.4 ± 0.6	1.7 to 2.2	1.14 to 1.9	1.4 ± 0.3	1 ± 0.3	1.3 ± 0.3
Dissipation factor (approx.) (mW/K)		4.8	6.6				
Marking	none	orange stripe	none	yellow stripe	none	none	none

^{*} for information only.

NTC THERMISTORS

glass encapsulated miniature bead

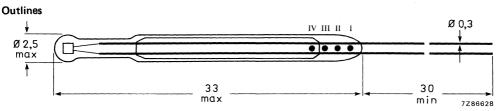
Features

Small diameter

- TEMPERATURE SENSING AND CONTROL
- Quick response to changes in temperature
- High stability over long time periodsHigh temperature operation
- Resistant to aggressive environments
- High degree of isolation between tip and environment

QUICK REFERENCE DATA

1 kΩ to 1 MΩ \pm 5%, \pm 10% \pm 2075 to 4100 K \pm 5%
2075 to 4100 K ± 5%
± 5%
1 a approv
1 s approx.
10 s approx.
1500 V min.
−55 to 200 °C, or
-55 to 300 °C
0 to 55 °C


APPLICATION

Temperature measurement and control up to 300 °C in 'aggressive' environments. Also level sensing.

DESCRIPTION

Bead thermistor with negative temperature coefficient, in a glass envelope with two tinned dumet (CuNiFe) wires.

MECHANICAL DATA

Maximum bow in the centre of the glass envelope is 1 mm.

Fig.1 Component outline.

2322 626 1....

MINIATURE RANGE

Marking

Four colour dots on the glass envelope, see Table 1 for colour code.

Mass

0.27 g approximately.

Mounting

In any position by soldering.

Soldering

Solderability

max. 240 °C, max. 4 s

Resistance to heat

max. 265 °C, max. 11 s

Inflammability

Uninflammable.

Impact

Free fall

100 mm

Robustness of terminations

Tensile strength

2.5 N

Bending

1.25 N

Resistance to solvents

in accordance with IEC 68-2-45, resistant to R113 at Tamb.

PACKAGING

100 thermistors in a cardboard boax.

ELECTRICAL DATA

Unless otherwise specified, measured in accordance with IEC publication 539.

Maximum dissipation at + 55 °C

100 mW

Dissipation factor

1.2 mW/K approx.

Thermal time constant

10 s approx.

Response time (see note 1)

1 s approx.

Operating temperature range (see Fig.2 and Table 1)

at zero power

-55 to + 200 °C, or + 300 °C

at maximum power

0 to + 55 °C

Dielectric withstanding voltage (RMS)

between terminals and glass envelope

min. 1500 V

Insulation resistance between terminals

and glass envelope at 100 V (DC)

min. 100 M Ω

Note

 Response time in silicone oil MS 200/50. The response time in silicone oil is the time necessary to change of 63.2% of the total difference between the initial and the final body temperature, when subjected to a step function change in ambient temperature. Step change: initial temperature: air at 25 °C; final temperature: oil (MS 200/50) at 85 °C.

Table 1 Catalogue number 2322 626 1

suffix o catalogue		R ₂₅	B _{25/85} -value ± 5%	temperature coefficient	colour code*		fficient colour code	e*	
tol. ± 5%	tol. ± 10%	kΩ	К	at 25 °C %/K	1	H	111		
3102	2102	1	2075	-2.3	brown	black	red		
3222	2222	2.2	2285	-2.6	red	red	red		
3472	2472	4.7	2485	-2.8	yellow	violet	red		
3103	2103	10	3750	-4.2	brown	black	orange		
3223	2223	22	3560	-4.0	red	red	orange		
3473	2473	47	3750	-4.2	yellow	violet	orange		
3104	2104	100	3900	-4.4	brown	black	yellow		
3224	2224	220	3860	-4.3	red	red	yellow		
3474	2474	470	3950	-4.5	yellow	violet	yellow		
3105	2105	1000	4100	-4.6	brown	black	green		

^{*} Thermistors with 5% tolerance have a gold dot IV; 10% tolerance is identified by a silver dot IV (Fig.1).

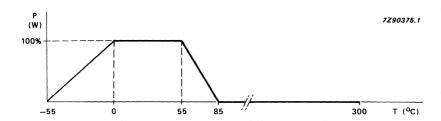


Fig.2 Derating curve.

Table 2 Stability data

CECC	IEC	test	procedure	drift (requirement)	drift (typical)*
D3 4.20.1		endurance	25 °C, 1000 hours	ΔR/R < 1%	$\Delta R/R = 0.1\%$
	68-2-1	endurance	-40 °C, 1000 hours	$\Delta R/R < 1\%$	$\Delta R/R = 0.15\%$
	539-gen	endurance	100 mW, 55 °C, 1000 hours	ΔR/R < 3%	Δ R/R = 0.5%
	68-2-2	dry heat, steady state	125 °C, 1000 hours	ΔR/R < 3%	$\Delta R/R = 0.1\%$
D1 4.19	68-2-3	damp heat, steady state	56 days at 40 °C, 90-95% RH	ΔR/R < 3%	$\Delta R/R = -0.2\%$
C2 4.14	68-2-14	rapid change of temperature	_40 °C to 125 °C, 50 cycles	ΔR/R < 2%	$\Delta R/R = 0.1\%$

^{*} Typical drift based on sample products with B25/85 value of 3797 K.

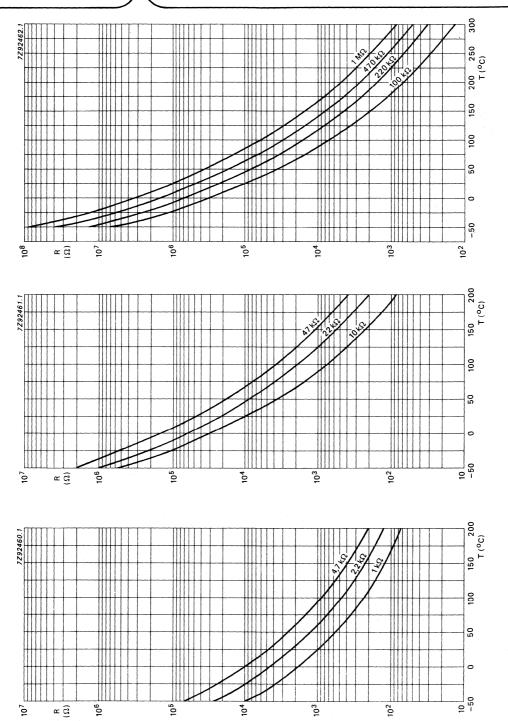


Fig.3 Typical resistance/temperature characteristics.

TEMPERATURE SENSING AND CONTROL

NTC THERMISTORS

glass encapsulated miniature bead

Features

- Small diameter
- Quick response to changes in temperature
- · Very high long term stability
- High temperature uses
- Resistant to aggressive environments

QUICK REFERENCE DATA

Resistance value at 25 °C	1 k Ω to 1 M Ω
Tolerance on R ₂₅ value	± 5%, ± 10%
Tolerance on B _{25/85} value	± 5% →
Thermal time constant	7.5 s approx.
Response time	0.85 s approx. →
Operating temperature range	
at zero power	−55 to 200 °C, or
	−55 to 300 °C
at maximum power	0 to 55 °C

APPLICATION

Temperature measurement and control up to 300 °C. Also level sensing.

DESCRIPTION

Bead thermistor with negative temperature coefficient, in a glass envelope with two tinned dumet (CuNiFe) wires.

MECHANICAL DATA

Outlines

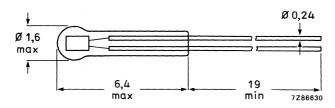


Fig.1 Component outline.

Marking

None

Mass

33 mg approximately

Mounting

In any position by soldering

Soldering

Solderability

Resistance to heat

max. 240 °C, max. 4 s max. 265 °C, max. 11 s

2322 626 2.... MINIATURE RANGE

Inflammability

Uninflammable

Impact

Free fall

100 mm

Robustness of terminations

Tensile strength

1.0 N

PACKAGING

100 thermistors in a cardboard box

ELECTRICAL DATA

Unless otherwise specified, measured according to IEC publication 539

Table 1 Catalogue number 2322 626 2....

suffix of the catalogue number				T _{max}	temperature coefficient at 25 °C
tol. ± 5%	tol. ± 10%	kΩ	K	°C	%/K
3102	2102	1	2075	200	-2.3
3222	2222	2,2	2285	200	<i>–</i> 2.6
3472	2472	4,7	2485	200	-2.8
3103	2103	10	3750	200	-4.2
3223	2223	22	3560	200	-4.0
3473	2473	47	3750	200	-4.2
3104	2104	100	3900	300	-4.4
3224	2224	220	3860	300	-4.3
3474	2474	470	3950	300	-4.5
3105	2105	1000	4100	300	-4.6

Maximum dissipation at + 55 °C

100 mW

Dissipation factor

0.8 mW/K approx.

Thermal time constant

7.5 s approx.

Response time (see note)

at maximum power

0.85 s approx.

....

0.00 s appro

Operating temperature range (Fig. 2 and Table 1)

at zero power

-55 to + 200 °C, or + 300 °C

0 to + 55 °C

Dielectric withstanding voltage (RMS)

between terminals and glass envelope

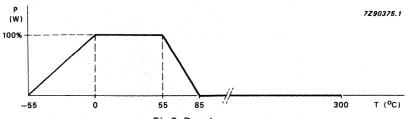
min. 100 V

Insulation resistance between terminals

and glass envelope at 10 V (DC)

min. 10 $M\Omega$

Note: Response time in silicone oil MS 200/50. The response time in silicone oil is the time necessary to change of 63.2 % of the total difference between the initial and the final body temperature, when subjected to a step function change in ambient temperature. Step change: initial temperature: air at 25 °C; final temperature: oil (MS 200/50) at 85 °C.



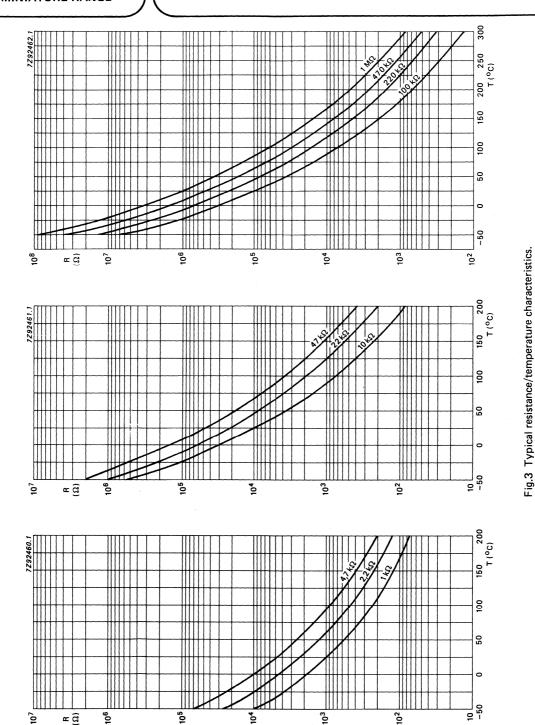

Fig.2 Derating curve.

Table 2 Stability data

CECC	IEC	test	procedure	drift (requirement)	drift (typical)*
D3 4.20.1		endurance	25 °C, 1000 hours	ΔR/R < 1%	Δ R/R = 0.1%
	68-2-1	endurance	-40 °C, 1000 hours	$\Delta R/R < 1\%$	Δ R/R = 0.15%
	539-gen	endurance	100 mW, 55 °C 1000 hours	ΔR/R < 3%	Δ R/R = 0.5%
	68-2-2	dry heat, steady state	125 °C, 1000 hours	ΔR/R < 3%	Δ R/R = 0.1%
D1 4.19	68-2-3	damp heat, steady state	56 days at 40 °C, 90-95% RH	ΔR/R < 3%	Δ R/R = -0.2%
C2 4.14	68-2-14	rapid change of temperature	-40 °C to 125 °C 50 cycles	ΔR/R < 2%	ΔR/R = 0.1%

 $^{^{\}ast}$ Typical drift based on sample products with B25/75 value of 3965 K.

49

TEMPERATURE SENSING AND CONTROL

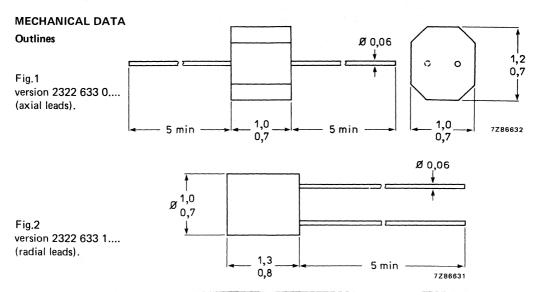
NTC THERMISTORS

miniature bead

Features

- Very small
- Very quick response to changes in temperature
- · Very high long term stability
- High temperature uses

QUICK REFERENCE DATA


Resistance value at 25 °C		1 k Ω to 1 M Ω	
Tolerance on R ₂₅ value		± 5%, ± 10%	-
B _{25/85} value		2075 to 4100 K	
Tolerance on B _{25/85} value		± 5%	←
Response time		0.5 s approx.	-
Operating temperature range at	zero power	-55 to 200 °C	

APPLICATION

Temperature measurement, level and flow sensing.

DESCRIPTION

Bead thermistor with negative temperature coefficient, with two solid platinum-iridium leads in axial or radial configuration.

2322 633 0.... 2322 633 1....

MINIATURE RANGE

Marking

none.

Mounting

In any position by spot welding of the leads to conducting wires or other supports.

Mass

5 mg. approximately.

Inflammability

Uninflammable.

PACKAGING

100 thermistors in a cardboard box.

ELECTRICAL DATA

Unless otherwise specified, measured according to IEC publication 539.

Table 1 Electrical data

	catalogue 2322 633 0 axial leads				R ₂₅	temperature coefficient at 25 °C	B _{25/85} -value ± 5%
tol. ± 5%	tol. ± 10%	tol. ± 5%	tol. ± 10%	kΩ	%/K	κ	
3102	2102	3102	2102	1	-2.3	2075	
3222	2222	3222	2222	2.2	-2.6	2285	
3472	2472	3472	2472	4.7	-2.8	2485	
3103	2103	3103	2103	10	-4.2	3750	
3223	2223	3223	2223	22	-4.0	3560	
3473	2473	3473	2473	47	-4.2	3750	
3104	2104	3104	2104	100	-4.4	3900	
3224	2224	3224	2224	220	-4.5	3860	
3474	2474	3474	2474	470	-4.5	3950	
3105	2105	3105	2105	1000	4.6	4100	

Response time (see Note 1)

0.5 s approx.

Operating temperature range, at zero power

-55 to + 200 °C

Note:

 Response time in silicone oil MS 200/50. This is the time needed for the sensor to reach 63.2% of the total temperature difference when subjected to a temperature change, in this case from 25 °C in air, to 85 °C in oil.

Table 2 Stability data

CECC	IEC	test	procedure	drift (requirement)	drift (typical)*
D3 4.20.1		endurance	25 °C, 1000 hours	ΔR/R < 1%	Δ R/R = 0.1%
	68-2-1	endurance	–40 °C, 1000 hours	$\Delta R/R \le 1\%$	Δ R/R = 0.15%
	539-gen	endurance	100 mW, 55 ^o C, 1000 hours	ΔR/R < 3%	$\Delta R/R = 0.5\%$
	68-2-2	dry heat, steady state	125 °C, 1000 hours	ΔR/R < 3%	$\Delta R/R = 0.1\%$
D1 4.19	68-2-3	damp heat, steady state	56 days at 40 °C, 90-95% RH	ΔR/R < 3%	Δ R/R = -0.2%
C2 4.14	68-2-14	rapid change of temperature	–40 °C to 125 °C 50 cycles	ΔR/R < 2%	$\Delta R/R = 0.1\%$

 $^{^{*}}$ Typical drift based on sample products with B25/85 value of 3797 K.

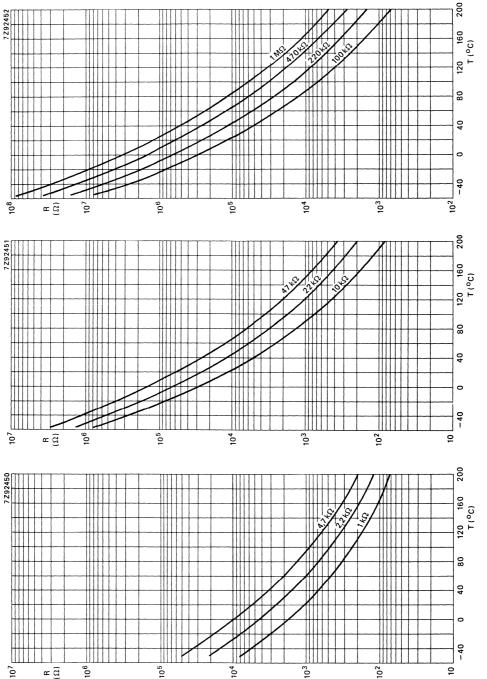


Fig.3 Typical resistance/temperature characteristics.

TEMPERATURE SENSING AND CONTROL

NTC THERMISTORS

glass encapsulated miniature bead

Features

- Small diameter
- Quick response to changes in temperature
- High stability over long time periods
- High temperature operation
- Resistant to aggressive environments

OUICK REFERENCE DATA

GOICK HEI ENENCE DATA	
Resistance value at 25 °C	1 k Ω to 1 M Ω
Tolerance on R ₂₅ value	± 5%, ± 10%
B _{25/85} value	2075 to 4100 K
Tolerance on B _{25/85} value	± 5%
Response time	6 s approx.
Thermal time constant	5.5 s approx.
Operating temperature range	
at zero power	−55 to 200 °C
at maximum power	0 to 55 °C

APPLICATION

Temperature measurements

DESCRIPTION

Bead thermistor with negative temperature coefficient, in a glass envelope with two tinned dumet (CuNiFe) wires.

MECHANICAL DATA

Outlines

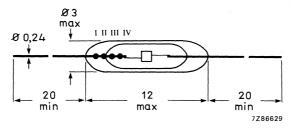


Fig.1 Component outline.

Marking

Colour dots on the glass envelope, see Fig.1 and Table 1.

Mass

0.1 g approximately.

2322 633 2....

MINIATURE RANGE

Mounting

In any position by soldering.

Soldering

Solderability max. 240 °C, max. 4 s Resistance to heat

max. 265 °C, max. 11 s

Inflammability

Uninflammable.

Impact

100 mm free fall

Robustness of terminations

Tensile strength 1.0 N Bending 0.5 N Torsion 3 times

Resistance to solvents: in accordance with IEC 68-2-45, resistant to R113 at Tamb

Packaging

100 thermistors in a cardboard box.

ELECTRICAL DATA

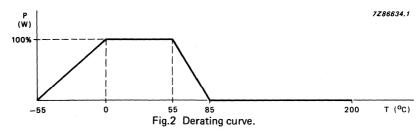
Unless otherwise specified, measured in accordance with IEC publication 539.

Maximum dissipation at +55 °C 60 mW

Dissipation factor 0.5 mW/K approx.

Thermal time constant 5.5 s approx. Response time (see note 1) 6 s approx.

Operating temperature range (Fig.2)


-55 to +200 °C at zero power 0 to +55 °C at maximum power

Dielectric withstanding voltage (RMS)

between terminals and glass envelope min. 1500 V

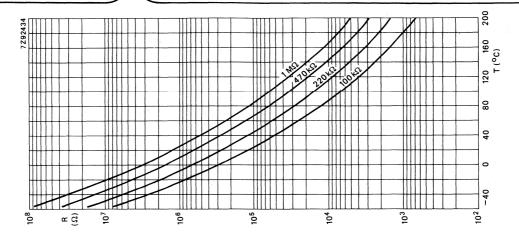
Insulation resistance between terminals

and glass envelope at 100 V (DC) min. 100 M Ω

Note

1. Response time in silicone oil MS 200/50. The response time in silicone oil is the time necessary to change of 63.2% of the total difference between the initial and the final body temperature, when subjected to a step function change in ambient temperature. Step change: initial temperature: air at 25 °C; final temperature: oil (MS 200/50) at 85 °C.

Table 1 Catalogue number 2322 633 2


suffix of catalogue				colour code*			
tol. ± 5%	tol. ± 10%	kΩ	K	at 25 °C %/K	1	11	111
3102	2102	1	2075	-2.3	brown	black	red
3222	2222	2.2	2285	-2.6	red	red	red
3472	2472	4.7	2485	-2.8	yellow	violet	red
3103	2103	10	3750	-4.2	brown	black	orange
3223	2223	22	3560	-4.0	red	red	orange
3473	2473	47	3750	-4.2	yellow	violet	orange
3104	2104	100	3900	-4.4	brown	black	yellow
3224	2224	220	3860	-4.3	red	red	yellow
3474	2474	470	3950	-4.5	yellow	violet	yellow
3105	2105	1000	4100	-4.6	brown	black	green

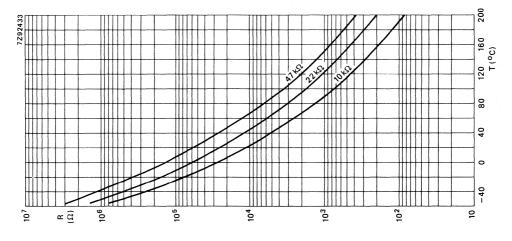

^{*} Thermistors with 5% tolerance have a gold dot IV; 10% tolerance is identified by a silver dot IV, (Fig.1).

Table 2 Stability data

CECC	IEC	test	procedure	drift (requirement)	drift (typical)*
D3 4.20.1		endurance	25 °C, 1000 hours	ΔR/R < 1%	ΔR/R = 0.1%
	68-2-1	endurance	-40 °C, 1000 hours	Δ R/R < 1%	$\Delta R/R = 0.15\%$
	539-gen	endurance	100 mW, 55 °C, 1000 hours	ΔR/R < 3%	ΔR/R = 0.5%
	68-2-2	dry heat, steady state	125 °C, 1000 hours	ΔR/R < 3%	$\Delta R/R = 0.1\%$
D1 4.19	68-2-3	damp heat, steady state	56 days at 40 °C, 90-95% RH	ΔR/R < 3%	Δ R/R = -0.2%
C2 4.14	68-2-14	rapid change of temperature	-40 °C to 125 °C, 50 cycles	ΔR/R < 2%	$\Delta R/R = 0.1\%$

^{*} Typical drift based on sample products with B_{25/85} value of 3797 K.

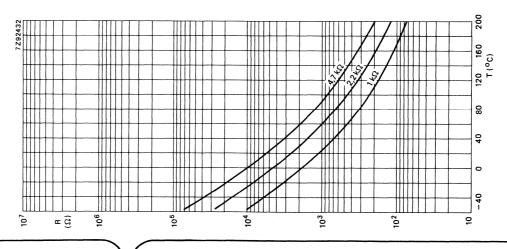


Fig.3 Typical resistance/temperature characteristics.

TEMPERATURE SENSING AND CONTROL

NTC THERMISTORS SOD27 range

Features

- Small diameter
- Quick response to changes in temperature
- High long term stability
- High temperature
- Resistant to aggressive environments

QUICK REFERENCE DATA

Туре		2322 633	72224	73224	
Resistance at 25 °C		220 k Ω	± 10%	± 5%	
Response time			0.	.75 s approx. 🗻	
Operating temperature range					
at zero power			25 t	o 300 °C	
at maximum power			25 t	o 55 °C	

APPLICATION

For high temperature measurement and control in domestic appliances and industrial process control equipment.

DESCRIPTION

These thermistors have a negative temperature coefficient and are mounted in a glass envelope (SOD27). They have two nickel plated copper clad iron connecting leads.

MECHANICAL DATA

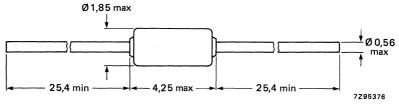


Fig.1 Component outline; SOD27.

Marking

: none

Mass

: 0.14 g approximately

Mounting

: in any position by soldering

Resistance to solvents

: according to IEC 68-2-45

Robustness of terminations

tensile strength

10 N

bending

5 N

torsion

3 times

Soldering

Solderability

max. 240 °C max. 4 s

Resistance to heat

max. 265 °C max. 11 s

For operating temperatures up to 300 °C spot welding is preferred.

HIGH TEMPERATURE RANGE

Impact

Free fall

100 mm

Inflammability

not inflammable, according to IEC 695-2-2

Packaging

500 thermistors in a cardboard box.

ELECTRICAL DATA

Unless otherwise specified, measured according to IEC publication 539.

Resistance at 25 °C type 2322 633 72224 type 2322 633 73224 B₂₅/85 value

220 kΩ ± 10% 220 kΩ ± 5% 3797 K ± 3%

Maximum dissipation

100 mW

Response time (see note 1)

0.75 s approx.

Operating temperature range at zero power at maximum power

25 to 300 °C 25 to 55 °C

Derating

See Fig.2.

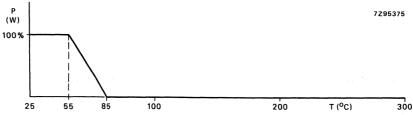


Fig. 2 Derating curve.

Dry heat at 300 °C, steady state

max. 1000 hours

Rapid change of temperature, 30 s at 25 °C/15 s at 300 °C

50 000 cycles

For resistance values at intermediate temperatures, see Table 1

─ Note:

 Response time in silicone oil MS 200/50. This is the time needed for the sensor to reach 63.2% of the total temperature difference when subjected to a temperature change, in this case from 25 °C in air, to 85 °C in oil.

HIGH TEMPERATURE RANGE

Table 1 Resistance values at intermediate temperatures

temperature	resistance	2322 63 toleran	3 72224 ce on R	2322 63 tolerand	3 73224 ce on R	temp. coefficient
оС	Ω	+ %	- %	+ %	- %	%/K
25	220 000	10,00	10,00	5,00	5,00	-4,12
30	179 500	10,61	10,61	5,61	5,61	-4,02
40	121 300	11,80	11,76	6,80	6,76	-3,81
50	83 630	12,94	12,58	7,94	7,58	-3,63
60	58 710	14,04	13,88	9,04	8,88	-3,45
70	41 920	15,10	14,84	10,10	9,84	-3,29
80	30 410	16,12	15,75	11,12	10,75	-3,13
90	22 390	17,10	16,65	12,10	11,65	-2,99
100	16 720	18,01	17,41	13,01	12,41	-2,87
110	12 630	18,95	18,23	13,95	13,23	-2,74
120	9 663	19,83	18,95	14,83	13,95	-2,62
130	7 478	20,68	19,64	15,68	14,64	-2,51
140	5 851	21,50	20,32	16,50	15,32	-2,40
150	4 625	22,28	20,94	17,28	15,94	-2,30
160	3 691	23,06	21,54	18,06	16,54	-2,21
170	2 973	23,79	22,14	18,79	17,14	-2,12
180	2 415	24,49	22,67	19,49	17,67	-2,04
190	1 978	25,17	23,20	20,17	18,20	_1,96
200	1 632	25,87	23,66	20,87	18,66	1,90
210	1 355	26,46	24,17	21,46	19,17	–1,83
220	1 132	27,14	24,60	22,14	19,60	–1,76
230	952	27,70	25,07	22,70	20,07	–1,70
240	806	28,32	25,48	23,32	20,48	-1,64
250	686	28,90	25,90	23,90	20,90	<u>-1,58</u>
260	587	29,45	26,42	24,45	21,42	–1,53
270	506	29,99	26,67	24,99	21,67	1,47
280	437	30,50	27,03	25,50	22,03	-1,43
290	380	31,02	27,36	26,02	22,36	-1,38
300	332	31,50	27,72	26,50	22,72	-1,33

HIGH TEMPERATURE RANGE

→ Table 2 Stability data

CECC	IEC	test	procedure	drift (requirement)	drift (typical)*
D3 4.20.	1	endurance	25 °C, 1000 hours	ΔR/R < 1%	$\Delta R/R = 0.1\%$
	68-2-1	endurance	-40 °C, 1000 hours	ΔR/R < 1%	Δ R/R = 0.15%
	539-gen	endurance	100 mW, 55 °C, 1000 hours	ΔR/R < 3%	$\Delta R/R = 0.5\%$
	68-2-2	dry heat, steady state	125 °C, 1000 hours	ΔR/R < 3%	$\Delta R/R = 0.1\%$
D1 4.19	68-2-3	damp heat, steady state	56 days at 40 °C, 90-95% RH	ΔR/R < 3%	Δ R/R = -0.2%
C2 4.14	68-2-14	rapid change of temperature	-40 °C to 125 °C, 50 cycles	ΔR/R < 2%	$\Delta R/R = 0.1\%$

^{*} Typical drift based on sample products with $B_{25/85}$ value of 3797 K.

NTC THERMISTOR

medium temperature

Features

- very small
- very quick response to temperature changes
- high accuracy at body temperature

TEMPERATURE SENSING AND CONTROL

QUICK REFERENCE DATA

Resistance at 37 °C	420 kΩ
Tolerance on R ₃₇ value	± 3.6%
Response time	approx. 0.5 s
Operating temperature range at zero power	-25 to +125 °C

APPLICATION

This thermistor has been specifically designed for use in medical applications.

MECHANICAL DATA

Dimensions in mm

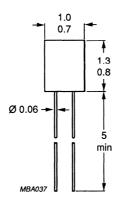


Fig.1 Component outline.

Marking: none

Mass: 3.5 mg approx.

PACKING

The thermistors are packed in carboard boxes, each box containing 100 items.

2322 633 90001 SPECIAL ACCURACY RANGE

ELECTRICAL DATA

Unless otherwise stated, measurements are in accordance with IEC Publication 539.

Resistance at 37 $^{\circ}$ C 420 $^{\circ}$ k Ω Tolerance on R₃₇ value \pm 3.6%
Resistance at 42 $^{\circ}$ C 343.5 $^{\circ}$ k Ω Tolerance on R₄₂ value \pm 4.4%
Response time approx. 0.5 s

Operating temperature range

at zero power —25 to +125 °C

NTC THERMISTOR

low, medium, and high temperature

Features

- excellent accuracy between 25 °C and 85 °C
- high stability

TEMPERATURE SENSING AND CONTROL

QUICK REFERENCE DATA

Resistance at 25 °C	4.7 Ω to 100 k Ω
Tolerance on R ₂₅ value	± 0.5 °C
Resistance at 85 °C	502.9 Ω to 9.498 k Ω
Tolerance on R ₈₅ value	0.5 °C
Response time (for information only)	1.2 s
Operating temperature range at zero power at maximum power	-40 to + 125 °C 0 to + 55 °C

MECHANICAL DATA

Dimensions in mm

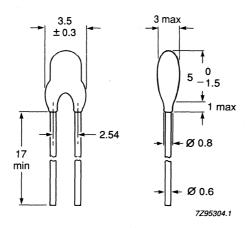


Fig.1 Component outline.

Marking: grey lacquered body

Mass : 0.22 grams approx.

PACKING

The thermistors are packed in cardboard boxes, each box containing 500 items.

ELECTRICAL DATA

Unless otherwise stated, measurements are in accordance with IEC Publication 539.

Climatic category	40/125/56
Resistance at 25 °C (see note 1)	4.7 Ω to 100 k Ω
Tolerance on R ₂₅ value	± 0.5 °C
Resistance at 85 °C	502.9 Ω to 9.498 k Ω
Tolerance on R ₈₅ value	0.5 °C
Response time (see note 2) (for information only)	1.2 s
Rated dissipation	250 mW
Dissipation factor (for information only)	7 mW/K
Thermal time constant (for information only)	11 s
Operating temperature range	
at zero power	-40 to + 125 °C
at maximum power	0 to + 55 °C

Table 1 Electrical data

catalogue number	R ₂₅ value ± 0.5 °C	R ₈₅ value ± 0.5 °C	B _{25/85} value (typical)	temperature coefficient at 25 °C
	kΩ	Ω	К	%/K
2322 640 10472	4.7	502.9	3977	-4.37
2322 640 10103	10	1070	3977	-4.37
2322 640 10473	47	4721	4090	-4.46
2322 640 10104	100	9498	4190	-4.57

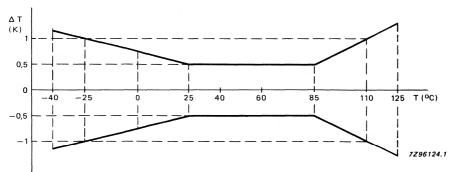


Fig.2 Tolerance curve.

Notes

- 1. For values of nominal resistance value and tolerance at intermediate temperatures, please refer to Table 2.
- Response time in silicone oil MS 200/50. This is the time needed for the sensor to reach 63.2% of the total temperature difference when subjected to a temperature change, in this case from 25 °C in air to 85 °C in oil.

Table 2 Resistance values at intermediate temperatures

temperature	2322 640 10472	2322 640 10103	2322 640 10473	2322 640 10104
oC .	kΩ	kΩ	kΩ	kΩ
-40	154.3	328.4	1586	3665
-35	111.7	237.7	1149	2635
-30	81.72	173.9	840.7	1914
-25	60.40	128.5	621	1404
-20	45.07	95.89	463	1040
–15	33.95	72.23	348.3	776.9
-10	25.80	54.89	264.1	585.5
-5	19.77	42.07	202	444.9
0	15.28	32.51	155.6	340.7
5	11.90	25.31	120.8	262.9
10	9.334	19.86	94.47	204.4
15	7.374	15.69	74.37	160.0
20	5.87	12.49	58.93	126.1
25	4.7	10.00	47.00	100.0
30	3.788	8.06	37.71	79.82
35	3.072	6.536	30.44	64.10
40	2.506	5.331	24.70	51.76
45	2.055	4.373	20.16	42.04
50	1.695	3.606	16.54	34.32
55	1.405	2.989	13.64	28.17
60	1.17	2.49	11.30	23.23
65	0.98	2.085	9.407	19.25
70	0.8239	1.753	7.867	16.03
75	0.6961	1.481	6.608	13.40
80	0.5903	1.256	5.574	11.26
85	0.5029	1.07	4.721	9.498
90	0.4303	0.9155	4.014	8.043
95	0.3695	0.7861	3.427	6.838
100	0.3184	0.6775	2.936	5.836
105	0.2754	0.586	2.524	4.999
110	0.2390	0.5086	2.178	4.297
115	0.2082	0.4429	1.885	3.706
120	0.1819	0.387	1.637	3.207
125	0.1594	0.3392	1.427	2.784

May 1989

NTC THERMISTORS

accuracy line (low heat loss accuracy line)

Features

- Accurate over a wide temperature range (tolerance on B-value between 3% and 0.75%)
- TEMPERATURE SENSING AND CONTROL

- Good stability
- Excellent price/performance ratio
- Flexible leads
- Low heat conductivity through leads (0.4 mm diameter Ni leads)

QUICK REFERENCE DATA

Resistance at 25 °C	2.7 k Ω to 470 k Ω
Tolerance on R ₂₅ value	± 5%, ± 3%, ± 2%, ± 1%
Tolerance on B _{25/85} value	± 3% to ± 0.75%
Response time (for information only)	1.7 s
Operating temperature range at zero power (continuously)	-40 to 125 °C up to 150 °C 0 to 55 °C

APPLICATION

Temperature sensing and control.

DESCRIPTION

These thermistors have a negative temperature coefficient. The device consists of a chip with two Nickel wires. It is grey lacquered and colour coded, but not insulated.

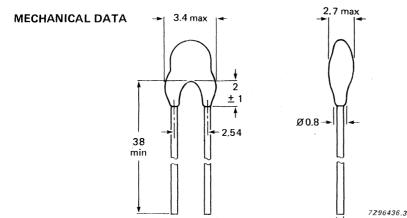


Fig.1 Component outline.

2322 640 5.... BASIC RANGE

MECHANICAL DATA (continued)

Marking: The thermistors have a black coloured body

Mass: 0.11 grams approx.

Mounting: By soldering (in any position)

Robustness of terminations:

Tensile strength 10 N
Bending (leads not allowed to break or become loose) 5 N

Soldering:

Solderability 240 °C max., duration 4 s max.

Resistance to heat 265 °C max., duration 11 s max.

Resistance to solvents:

In accordance with IEC 68-2-45, resistant to R113 at ambient temperature

Impact:

Free fall 1 m

Shock: 490 m/s for 11 ms, half sine-wave

Inflammability:

The thermistors meet the requirements of IEC Publication 695-2-2 (1980, needle flame test)

PACKING

The thermistors are packed in cardboard boxes; the smallest packing quantity is 500 thermistors.

Unless otherwise stated, the thermistors have been measured in accordance with IEC Publication 539.

Standard selection tolerance on R₂₅

Stability

Climatic category

Rated dissipation

Dissipation factor (for information only)

Response time (for information only)

Thermal time constant (for information only)

Operating temperature range

at zero power (continuously)

(for short periods)

at maximum power (100 mW)

± 5%, ± 3%, ± 2% and ± 1%

in accordance with CECC 43 000

and IEC; see Table 2

40/125/56

100 mW

2.2 mW/K

1.7 s (see note 1)

13 s

-40 to 125 °C up to 150 °C (note 2)

0 to 55 °C

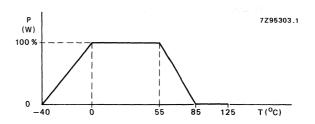


Fig.2 Derating curve.

Table 1 Electrical data

R_{25} value $k\Omega$	B _{25/85} value	, ,	catalogue number 2322 640 5 R ₂₅ ± 3%		catalogue number 2322 640 5 R ₂₅ ± 1%
2.7	3977 K± 0.75%	. 3272	. 6272	. 4272	. 5272
4.7	3977 K± 0.75%	. 3472	. 6472	. 4472	. 5472
10	3977 K± 0.75%	. 3103	. 6103	. 4103	. 5103
47	3977 K± 1.5%	. 3473	. 6473	. 4473	
100	4190 K± 2%	. 3104	. 6104	. 4104	
470	4570 K± 3%	. 3474	. 6474	. 4474	

- Response time in silicone oil MS 200/50. This is the time needed for the sensor to reach 63.2% of the total temperature difference when subjected to a temperature change, in this case from 25 °C in air to 85 °C in oil.
- 2. Valid for all types with the exception of 2322 640 5.474.

2322 640 5.... BASIC RANGE

Table 2 Stability data

CECC	IEC	test	procedure	drift (requirement)	drift (typical) (note 1)
D3 4.20.1		endurance	25 °C, 1000 hours	ΔR/R < 1%	Δ R/R = 0.1%
	68-2-1	endurance	-40 °C, 1000 hours	$\Delta R/R < 1\%$	Δ R/R = 0.15%
	539-gen	endurance	100 mW, 55 °C, 1000 hours	ΔR/R < 3%	Δ R/R = 0.5%
	68-2-2	dry heat, steady state	125 °C, 1000 hours	ΔR/R < 3%	$\Delta R/R = 0.1\%$
D1 4.19	68-2-3	damp heat, steady state	56 days at 40 °C, 90-95% RH	ΔR/R < 3%	Δ R/R = -0.2%
C2 4.14	68-2-14	rapid change of temperature	-40 °C to 125 °C 50 cycles	ΔR/R < 2%	$\Delta R/R = 0.1\%$

Note to Table 2

1. Typical drift is based on sample products with a $B_{25/85}$ value of 3977 K and a $B_{25/75}$ value of 3965 K.

RT values and tolerance on RT values

These thermistors have a narrow tolerance on the B value, the result of which provides a very small tolerance on the nominal resistance value over a wide temperature range. The same table describing R as a function of T with steps of 5 $^{\circ}$ C as published for the series 2322 640 6. . . . range is relevant here. Also the 'Steinhart and Hart' equation of the above range can be used here to calculate intermediate resistance values. The relevant part of the table is that containing the R₂₅ values and B₂₅/85 values of the 2322 640 5. . . . range.

SUPERSEDES DATA OF SEPTEMBER 1986

NTC THERMISTORS

accuracy line (extended accuracy line)

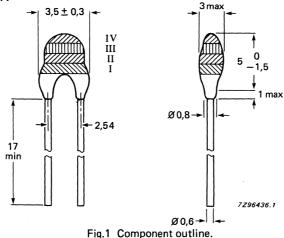
Features

- Accurate over wide temperature range
- High stability
- Excellent price/performance ratio

TEMPERATURE SENSING AND CONTROL TEMPERATURE COMPENSATION

QUICK REFERENCE DATA

Resistance value at 25 °C	2.7 k Ω to 470 k Ω
Tolerance on R ₂₅ value	± 2%, ± 3%, ± 5%, ± 10%
Tolerance on B _{25/85} value	± 3% to ± 0.75%
Response time	1.2 s
Operating temperature range	
at zero power (continuously)	–40 to 125 °C
(for short periods) (note 1)	up to 150 °C
at maximum power (250 mW)	0 to 55 °C


APPLICATION

Temperature sensing and control.

DESCRIPTION

These thermistors have a negative temperature coefficient. The device consists of a chip with two Nickel wires. It is grey lacquered and colour coded, but not insulated.

MECHANICAL DATA

Note

1. For part of product range only; see Table 1 for details.

2322 640 6....

BASIC RANGE

MECHANICAL DATA (continued)

Marking: The thermistors are marked with colour bands in accordance with Fig.1 and Table 1.

Mass:

0.22 g approx.

Mounting: in any position by soldering.

Robustness of terminations

Tensile strength 10 N
Bending (leads not allowed to break or become loose) 5 N

Soldering

Solderability max. 240 °C, max. 4 s Resistance to heat max. 265 °C, max. 11 s

Resistance to solvents

Resistant to R113 at ambient temperatures in accordance with IEC Publication 68-2-45.

Impact

Free fall 1 m

Shock: 490 m/s, 11 ms, half sine-wave

Inflammability

The thermistors meet the requirements of IEC Publication 695-2-2 (1980, needle flame test)

PACKING

The thermistors are packed in cardboard boxes, the smallest packing quanity is 500 thermistors. Products can be supplied on tape on special request.

Unless otherwise stated, the thermistors have been measured in accordance with IEC Publication 539 (see also Table 1).

Standard selection tolerance on R₂₅
Stability
Climatic category

Climatic category 40/125/56
Rated dissipation 250 mW
Dissipation factor (for information only) 7 mW/K
Response time (for information only) 1.2 s (note 1)

-40 to 125 °C up to 150 °C (note 2) 0 to 55 °C

11 s

 \pm 2%, \pm 3%, \pm 5%, \pm 10%

in accordance with CECC 43 000 and IEC: see Table 2

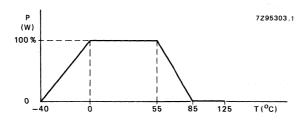


Fig.2 Derating curve.

- Response time in silicone oil MS 200/50. This is the time needed for the sensor to reach 63.2% of the total temperature difference when subjected to a temperature change, in this case from 25 °C in air to 85 °C in oil.
- 2. Valid for part of product range only, see Table 1.

2322 640 6.... BASIC RANGE

Table 1 Electrical data

R ₂₅ value	B _{25/85} value				catalogue number	1		colour
		1	1	2322 640 6	2322 640 6	code	code	code
kΩ	Tarana Taran	R ₂₅ ± 2%	R ₂₅ ± 3%	R ₂₅ ± 5%	R ₂₅ ± 10%	band I	band II	band III
						(note 2)	(note 2)	(note 2)
2.7 (note 1)	3977 K ± 0.75%	. 4272	. 6272	. 3272	. 2272	red	violet	red
3.3 (note 1)	3977 K ± 0.75%	. 4332	. 6332	. 3332	. 2332	orange	orange	red
4.7 (note 1)	3977 K ± 0.75%	. 4472	. 6472	. 3472	. 2472	yellow	violet	red
6.8 (note 1)	3977 K ± 0.75%	. 4682	. 6682	. 3682	. 2682	blue	grey	red
10 (note 1)	3977 K ± 0.75%	. 4103	. 6103	. 3101	. 2103	brown	black	orange
12	3740 K ± 3%	. 4123	. 6123	. 3123	. 2123	brown	red	orange
15	3740 K ± 3%	. 4153	. 6153	. 3153	. 2153	brown	green	orange
22	3740 K ± 3%	. 4223	. 6223	. 3223	. 2223	red	red	red
33 (note 1)	4090 K ± 1.5%	. 4333	. 6333	. 3333	. 2333	orange	orange	orange
47 (note 1)	4090 K ± 1.5%	. 4473	. 6473	. 3473	. 2473	yellow	violet	orange
68 (note 1)	4190 K ± 2%	. 4683	. 6683	. 3683	. 2683	blue	grey	orange
100 (note 1)	4190 K ± 2%	. 4104	. 6104	. 3104	. 2104	brown	black	yellow
150	4370 K ± 3%	. 4154	. 6154	. 3154	. 2154	brown	green	yellow
220	4370 K ± 3%	. 4224	. 6224	. 3224	. 2224	red	red	yellow
330	4570 K ± 3%	. 4334	. 6334	. 3334	. 2334	orange	orange	yellow
470	4570 K ± 3%	. 4474	. 6474	. 3474	. 2474	yellow	violet	yellow

Table 2 Stability data

CECC	IEC	test	procedure	drift (requirement)	drift (typical (note 1)
D3 4.20.1		endurance	25 °C, 1000 hours	ΔR/R < 1%	Δ R/R = 0.1%
	68-2-1	endurance	-40 °C, 1000 hours	Δ R/R $<$ 1%	$\Delta R/R = 0.15\%$
	539-gen	endurance	250 mW, 55 °C, 1000 hours	ΔR/R < 3%	Δ R/R = 0.5%
	68-2-2	dry heat, steady state	125 °C, 1000 hours	ΔR/R < 3%	Δ R/R = 0.1%
D1 4.19	68-2-3	damp heat, steady state	56 days at 40 °C, 90-95% RH	ΔR/R < 3%	Δ R/R = -0.2%
C2 4.14	68-2-14	rapid change of temperature	-40 °C to 125 °C, 50 cycles	ΔR/R < 2%	Δ R/R = 0.1%

Notes to Table 1

- 1. Operating temperature range at zero power is 150 °C max.
- 2. Dependent upon R₂₅ tolerance, the band IV is colour coded as follows:

For $R_{25} \pm 2\%$, band IV is coloured red

For $R_{25} \pm 3\%$, band IV is coloured orange

For $R_{25} \pm 5\%$, band IV is coloured gold

For R₂₅ ± 10%, band IV is coloured silver

Note to Table 2

1. Typical drift is based on sample products with a $B_{25/85}$ value of 3977 K and a $B_{25/75}$ value of 3965 K.

RT values and tolerance on RT values

These thermistors have a narrow tolerance on the B value, the result of which provides a very small tolerance on the nominal resistance value over a wide temperature range. For this reason, the usual graphs of R = f(T) are replaced by Table 5 together with a formula with which the characteristics can be calculated with high accuracy.

Formula to determine nominal resistance values

The resistance values at intermediate temperatures can be calculated using the 'Steinhart and Hart' equation:

$$R_T = (R_{25}/R_{ref}) \times e^{\left[3\sqrt{(\sqrt{E^2 + D - E})} - 3\sqrt{(\sqrt{E^2 + D - E})}\right]}$$

Table 4 shows a list of different $^{\prime}E^{\prime}$, $^{\prime}D^{\prime}$, and $^{\prime}R_{ref}^{\prime}$ values for different B values. In the Table, the value of $^{\prime}T^{\prime}$ is the temperature in K.

Table 4 Values to be used with 'Steinhart and Hart' formula

B value (K)	Е	D	R_{ref} (k Ω)
3977	5766.8 - [5.0541 x 10 ⁶ /T]	4.7692 x 10 ⁸	10
3740	3498.5 - [4.1026 x 10 ⁶ /T]	2.7574 x 10 ⁸	22
4090	4194.7 - [4.5876 x 10 ⁶ /T]	2.8108 x 10 ⁸	47
4190	4169.4 - [5.0802 x 10 ⁶ /T]	3.4453 x 10 ⁸	100
4370	4185.0 - [5.2748 x 10 ⁶ /T]	3.1658 x 10 ⁸	220
4570	4404.9 - [5.6266 x 10 ⁶ /T]	3.1666 x 10 ⁸	470

Determination of the resistance/temperature deviation from the nominal

The complete resistance deviation is obtained by combining the 'R25 tolerance' value with the 'resistance deviation due to B tolerance' value.

Let X = R25 tolerance

Y = resistance deviation due to B tolerance

Z = complete resistance deviation

Then,

$$Z = \{[1 + (X/100)] \times [1 + (Y/100)] - 1\} \times 100$$

or

Z = X + Y (approximation)

TC = temperature coefficient

 ΔT = temperature deviation

so

$$\Delta T = Z/TC$$

2322 640 6.... BASIC RANGE

```
Example: (at 0 °C)
        X = 5\%
Let
        Y = 0.89\% (see Table 5)
        TC = 5.08\%/K (see Table 5)
Then
        Z = \{ [1 + (5/100)] \times [1 + (0.89/100)] - 1 \} \times 100
            = \{ [1 + 0.05] \times [1 + 0.0089] - 1 \} \times 100
            = \{ [1.05 \times 1.0089] - 1 \} \times 100
            = \{ 1.0593 - 1 \} \times 100
            = 0.0593 \times 100
            = 5.93%
or, (by approximation)
        Z = X + Y
            = 5 + 0.89
            = 5.89%
        \Delta T = Z/TC
            = 5.93/5.08
            = 1.167 (1.17)
```

So, a NTC having a R₂₅ value = 10 k Ω has a value of 32.51 k Ω between \pm 1.17 °C.

Table 5 Resistance values at intermediate temperatures

-40 -35 -30 -25 -20 -15 -10	32.84 23.77 17.39 12.85 9.589	% 2.64 2.40	%/K 6.57	6.272	6.332		and the second	
-35 -30 -25 -20 -15	23.77 17.39 12.85	2.40	6.57		0.002	6.472	6.682	6.103
-30 -25 -20 -15	17.39 12.85			88.67	108.4	154.3	223.3	328.4
-25 -20 -15	12.85		6.36	64.18	78.44	111.7	161.6	237.7
–20 –15		2.16	6.15	46.95	57.39	81.72	118.3	173.9
15	0.580	1.93	5.95	34.70	42.41	60.40	87.38	128.5
	3.303	1.71	5.76	25.89	31.64	45.07	65.21	95.89
10	7.223	1.49	5.58	19.50	23.84	33.95	49.12	72.23
-10	5.489	1.29	5.40	14.82	18.11	25.80	37.33	54.89
5	4.207	1.08	5.24	11.36	13.88	19.77	28.61	42.07
0	3.251	0.89	5.08	8.778	10.73	15.28	22.11	32.51
5	2.531	0.70	4.92	6.834	8.352	11.90	17.21	25.31
10	1.986	0.52	4.78	5.362	6.554	9.334	13.50	19.86
15	1.569	0.34	4.64	4.236	5.178	7.374	10.67	15.69
20	1.249	0.17	4.50	3.372	4.122	5.870	8.493	12.49
25	1.000	0.00	4.37	2.700	3.300	4.700	6.800	10.00
30	0.8060	0.16	4.25	2.176	2.660	3.788	5.481	8.060
35	0.6536	0.32	4.13	1.765	2.157	3.072	4.444	6.536
40	0.5331	0.47	4.02	1.439	1.759	2.506	3.625	5.331
45	0.4373	0.62	3.91	1.181	1.443	2.055	2.973	4.373
50	0.3606	0.77	3.80	0.9736	1.190	1.695	2.452	3.606
55	0.2989	0.91	3.70	0.8070	0.9864	1.405	2.033	2.989
60	0.2490	1.05	3.60	0.6723	0.8217	1.170	1.693	2.490
65	0.2085	1.18	3.51	0.5630	0.6881	0.9800	1.418	2.085
70	0.1753	1.31	3.42	0.4733	0.5785	0.8239	1.192	1.753
75	0.1481	1.44	3.33	0.3999	0.4887	0.6961	1.007	1.481
80	0.1256	1.57	3.25	0.3391	0.4145	0.5903	0.8541	1.256
85	0.1070	1.69	3.16	0.2889	0.3531	0.5029	0.7276	1.070
90	0.09155	1.81	3.09	0.2472	0.3021	0.4303	0.6225	0.9155
95	0.07861	1.93	3.01	0.2122	0.2594	0.3695	0.5345	0.7861
100	0.06775	2.04	2.94	0.1829	0.2236	0.3184	0.4607	0.6775
105	0.05860	2.15	2.87	0.1582	0.1934	0.2754	0.3985	0.5860
110	0.05086	2.26	2.80	0.1373	0.1678	0.2390	0.3458	0.5086
115	0.04429	2.37	2.73	0,1196	0.1462	0.2082	0.3012	0.4429
120	0.03870	2.47	2.67	0.1045	0.1277	0.1819	0.2632	0.3870
125	0.03392	2.57	2.61	0.0916	0.1119	0.1594	0.2307	0.3392
130	0.03332	2.67	2.55	0.0805	0.0984	0.1402	0.2028	0.2982
135	0.02629	2.77	2.49	0.0710	0.0868	0.1236	0.1788	0.2629
140	0.02023	2.86	2.43	0.0627	0.0767	0.1092	0.1780	0.2324
145	0.02324	2.95	2.38	0.0556	0.0680	0.0969	0.1402	0.2061
150	0.02001	3.05	2.33	0.0495	0.0605	0.0861	0.1402	0.1832

Replace dot in catalogue number by one of the following, depending on tolerance on required R₂₅ value:

⁴ for a tolerance of ± 2%

⁶ for a tolerance of ± 3%

³ for a tolerance of \pm 5%

² for a tolerance of ± 10%

2322 640 6.... BASIC RANGE

Table 5 (continued)

temperature	ratio R _T /R ₂₅	deviation in R value due to B tolerance	temperature coefficient		alue (k Ω) for (note 1)	
oC		%	%/K	6.123	6.153	6.223
-40	25.80	10.24	6.09	309.5	386.9	567.5
-35	19.12	9.26	5.89	229.4	286.8	420.6
-30	14.31	8.31	5.70	171.7	214.6	314.8
-25	10.81	7.40	5.52	129.7	162.1	237.8
-20	8.235	6.53	5.35	98.82	123.5	181.2
-15	6.328	5.69	5.19	75.94	94.92	139.2
-10	4.902	4.88	5.03	58.82	73.52	107.8
-5	3.826	4.11	4.88	45.91	57.39	84.17
0	3.009	3.36	4.73	36.10	45.13	66.19
5	2.383	2.64	4.60	28.59	35.74	52.42
10	1.900	1.94	4.46	22.79	28.49	41.79
15	1.524	1.27	4.34	18.29	22.87	33.54
20	1.231	0.63	4.21	14.77	18.46	27.08
25	1.000	0.00	4.10	12.00	15.00	22.00
30	0.8171	0.61	3.98	9.805	12.26	17.98
35	0.6713	1.20	3.88	8.055	10.07	14.77
40	0.5545	1.79	3.77	6.653	8.317	12.20
45	0.4603	2.35	3.67	5.524	6.905	10.13
50	0.3840	2.91	3.57	4.609	5.761	8.449
55	0.3219	3.46	3.48	3.863	4.829	7.083
60	0.2711	3.99	3.39	3.253	4.067	5.964
65	0.2293	4.52	3.30	2.752	3.440	5.045
70	0.1948	5.03	3.22	2.337	2.922	4.285
75	0.1661	5.53	3.14	1.994	2.492	3.655
80	0.1423	6.02	3.06	1.707	2.134	3.130
85	0.1223	6.51	2.99	1.467	1.834	2.690
90	0.1055	6.98	2.92	1.266	1.582	2.321
95	0.09133	7.44	2.85	1.096	1.370	2.009
100	0.07935	7.90	2.78	0.9522	1.190	1.746
105	0.06917	8.34	2.71	0.8300	1.037	1.522
110	0.06048	8.78	2.65	0.7258	0.9072	1.331
115	0.05305	9.21	2.59	0.6366	0.7958	1.167
120	0.04668	9.63	2.53	0.5602	0.7002	1.027
125	0.04119	10.04	2.47	0.4943	0.6179	0.9061

^{1.} Replace dot in catalogue number by one of the following, depending on tolerance on required R₂₅ value:

⁴ for a tolerance of ± 2%

⁶ for a tolerance of ± 3%

³ for a tolerance of ± 5%

² for a tolerance of ± 10%

temperature	ratio R _T /R ₂₅	deviation in R value due to B tolerance	temperature coefficient		value (k Ω) for (note 1)
оС		%	%/K	6.333	6.473
-40	33.74	5.42	6.55	1114	1586
-35	24.44	4.91	6.34	806.7	1149
–30	17.89	4.42	6.15	590.3	840.7
-25	13.21	3.95	5.96	436.1	621
-20	9.852	3.49	5.78	325.1	463
-15	7.41	3.05	5.61	244.5	348.3
-10	5.620	2.62	5.45	185.5	264.1
– 5	4.297	2.21	5.29	141.8	202
0	3.311	1.81	5.14	109.3	155.6
5	2.571	1.43	4.99	84.83	120.8
10	2.01	1.05	4.85	66.33	94.47
15	1.582	. 69	4.72	52.21	74.37
20	1.254	. 34	4.59	41.38	58.93
25	1	0	4.46	33.00	47
30	. 8024	. 33	4.34	26.48	37.71
35	. 6476	. 65	4.23	21.37	30.44
40	. 5256	. 97	4.12	17.35	24.70
45	. 4289	1.28	4.01	14.16	20.16
50	. 3519	1.58	3.91	11.61	16.54
55	. 2902	1.87	3.81	9.575	13.64
60	. 2404	2.16	3.71	7.934	11.3
65	. 2001	2.44	3.62	6.605	9.407
70	. 1674	2.72	3.53	5.524	7.867
75	. 1406	2.99	3.44	4.640	6.608
80	. 1186	3.25	3.36	3.913	5.574
85	. 10045	3.51	3.28	3.315	4.721
90	. 08541	3.76	3.2	2.819	4.014
95	. 07291	4.01	3.13	2.406	3.427
100	. 06246	4.25	3.06	2.061	2.936
105	. 05371	4.48	2.98	1.772	2.524
110	. 04634	4.72	2.92	1.529	2.178
115	. 04012	4.94	2.85	1.324	1.885
120	. 03484	5.16	2.79	1.150	1.637
125	. 03035	5.38	2.73	1.001	1.427
130	. 02653	5.6	2.67	. 8754	1.247
135	. 02325	5.8	2.61	. 7673	1.093
140	. 02044	6.01	2.55	. 6744	. 9605
145	. 01801	6.21	2.5	. 5944	. 8466
150	.01592	6.41	2.44	. 5254	. 7482

- 1. Replace dot in catalogue number by one of the following, depending on tolerance on required R_{25} value:
 - 4 for a tolerance of ± 2%
 - 6 for a tolerance of ± 3%
 - 3 for a tolerance of ± 5%
 - 2 for a tolerance of ± 10%

2322 640 6.... BASIC RANGE

Table 5 (continued)

temperature	ratio R _T /R ₂₅	deviation in R value due to B tolerance	temperature coefficient		alue (k Ω) for (note 1)
oC.		%	%/K	6.683	6.104
–40	36.65	7.47	6.70	2492	3665
-35	26.35	6.76	6.49	1792	2635
-30	19.14	6.08	6.29	1302	1914
–25	14.04	5.43	6.10	954.7	1404
-20	10.40	4.79	5.92	707.2	1040
–15	7.769	4.19	5.74	528.3	776.9
-10	5.855	3.60	5.57	398.1	585.5
-5	4.449	3.03	5.41	302.5	444.9
0	3.407	2.48	5.26	231.7	340.7
5	2.629	1.95	5.11	178.8	262.9
10	2.044	1.44	4.97	139.0	204.4
15	1.600	0.94	4.83	108.8	160.0
20	1.261	0.46	4.70	85.75	126.1
25	1.000	0.00	4.57	68.00	100.0
30	0.7982	0.45	4.45	54.28	79.82
35	0.6410	0.89	4.35	43.59	64.10
40	0.5176	1.33	4.22	35.20	51.76
45	0.4204	1.75	4.11	28.59	42.04
50	0.3432	2.16	4.00	23.34	34.32
55	0.2817	2.57	3.90	19.16	28.17
60	0.2323	2.96	3.80	15.80	23.23
65	0.1925	3.35	3.71	13.09	19.25
70	0.1603	3.73	3.62	10.90	16.03
75	0.1340	4.10	3.53	9.113	13.40
80	0.1126	4.46	3.45	7.654	11.26
85	0.09498	4.82	3.36	6.458	9.498
90	0.08043	5.17	3.28	5.469	8.043
95	0.06838	5.51	3.21	4.650	6.838
100	0.05836	5.85	3.13	3.969	5.836
105	0.04999	6.18	3.06	3.399	4.999
110	0.04297	6.50	2.99	2.922	4.297
115	0.03706	6.81	2.92	2.520	3.706
120	0.03207	7.12	2.86	2.181	3.207
125	0.02784	7.43	2.80	1.893	2.784

Replace dot in catalogue number by one of the following, depending on tolerance on required R₂₅ value:

⁴ for a tolerance of ± 2%

⁶ for a tolerance of ± 3%

³ for a tolerance of ± 5%

² for a tolerance of ± 10%

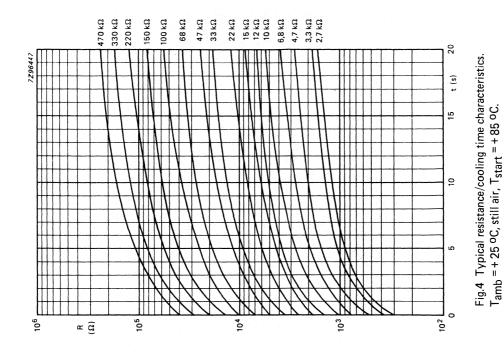
temperature	ratio R _T /R ₂₅	deviation in R value due to B tolerance	temperature coefficient		alue (k Ω) for (note 1)
oC		%	%/K	6.154	6.224
-40	41.38	11.82	6.89	6206	9103
35	29.47	10.68	6.68	4420	6483
-30	21.20	9.60	6.48	3180	4664
-25	15.41	8.55	6.29	2311	3389
-20	11,30	7.55	6.11	1695	2486
-15	8.363	6.58	5.93	1254	1840
-10	6.243	5.65	5.76	936.5	1374
-5	4.700	4.75	5.60	704.9	1034
0	3.566	3.89	5.44	534.9	784.5
5	2.726	3.05	5.29	409.0	599.8
10	2.100	2.25	5.15	315.0	462.0
15	1.629	1.47	5.01	244.3	358.4
20	1.272	0.72	4.88	190.8	279.9
25	1.000	0.00	4.75	150.0	220.0
30	0.7911	0.71	4.62	118.7	174.0
35	0.6296	1.40	4.51	94.44	138.5
40	0.5040	2.08	4.39	75.60	110.9
45	0.4058	2.74	4.28	60.87	89.27
50	0.3285	3.40	4.17	49.27	72.26
55	0.2673	4.04	4.07	40.09	58.80
60	0.2186	4.67	3.97	32.79	48.09
65	0.1797	5.28	3.87	26.95	39.53
70	0.1484	5.89	3.78	22.25	32.64
75	0.1231	6.49	3.69	18.46	27.08
80	0.1026	7.07	3.60	15.38	22.56
85	0.08582	7.64	3.52	12.87	18.88
90	0.07211	8.21	3.44	10.82	15.86
95	0.06083	8.76	3.36	9.125	13.38
100	0.05152	9.31	3.28	7.728	11.33
105	0.04380	9.84	3.21	6.570	9.635
110	0.03737	10.36	3.14	5.605	8.221
115	0.03199	10.88	3.07	4.799	7.038
120	0.02749	11.39	3.00	4.124	6.048
125	0.02369	11.88	2.94	3.554	5.212

- Replace dot in catalogue number by one of the following, depending on tolerance on required R25 value:
 - 4 for a tolerance of ± 2%
 - 6 for a tolerance of ± 3%
 - 3 for a tolerance of \pm 5%
 - 2 for a tolerance of \pm 10%

2322 640 6.... BASIC RANGE

Table 5 (continued)

temperature	ratio R _T /R ₂₅	deviation in R value due to B tolerance	temperature coefficient		alue (k Ω) for (note 1)
oC		%	%/K	6.334	6.474
-40	47.68	12.29	7.13	15730	22410
–35	33.56	11.12	6.91	11080	15770
-30	23.87	9.99	6.71	7878	11220
-25	17.15	8.90	6.52	5659	8060
–20	12.44	7.86	6.33	4104	5846
–15	9.103	6.85	6.15	3004	4279
-10	6.721	5.88	5.98	2218	3159
-5	5.005	4.95	5.82	1651	2352
0	3.756	4.05	5.66	1240	1766
5	2.842	3.18	5.50	937.8	1336
10	2.166	2.35	5.36	714.7	1018
15	1.663	1.54	5.22	548.6	781.4
20	1.285	0.76	5.08	424.1	604.0
25	1.000	0.00	4.95	330.0	470.0
30	0.7832	0.74	4.82	258.4	368.1
35	0.6172	1.46	4.70	203.7	290.1
40	0.4893	2.17	4.59	161.5	229.9
45	0.3901	2.86	4.47	128.7	183.3
50	0.3128	3.55	4.36	103.2	147.0
55	0.2521	4.22	4.26	83.21	118.5
60	0.2043	4.88	4.15	67.42	96.03
6 5	0.1664	5.53	4.06	54.91	78.20
70	0.1362	6.16	3.96	44.93	64.00
75	0.1120	6.79	3.87	36.94	52.62
80	0.09247	7.40	3.78	30.51	43.46
85	0.07671	8.01	3.69	25.31	36.05
90	0.06391	8.60	3.61	21.09	30.04
95	0.05346	9.18	3.53	17.64	25.13
100	0.04490	9.76	3.45	14.82	21.10
105	0.03786	10.32	3.37	12.49	17.79
110	0.03204	10.87	3.30	10.57	15.06
115	0.02722	11.42	3.23	8.983	12.79
120	0.02320	11.95	3.16	7.656	10.90
125	0.01984	12.48	3.09	6.547	9.325


^{1.} Replace dot in catalogue number by one of the following, depending on tolerance on required R25 value:

⁴ for a tolerance of ± 2%

⁶ for a tolerance of ± 3%

³ for a tolerance of $\pm\,5\%$

² for a tolerance of ± 10%

150 Fig.3 Typical resistance/temperature characteristics. (0°C) 100 50 10²L -50 105 104 103 90 108 107 æ Ĝ

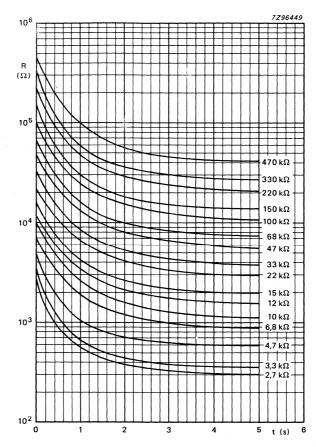


Fig.5 Typical resistance/heating time characteristics, from air of 25 °C to oil of 85 °C.

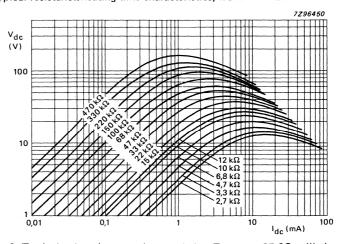


Fig.6 Typical voltage/current characteristics, T_{amb} = + 25 °C, still air.

NTC THERMISTORS

moulded range

Features

- Excellent for surface temperature measurement
- Metal strip for heat conduction and easy mounting
- High accuracy at 100 °C
- Minimum 350 V dielectric withstanding voltage

QUICK REFERENCE DATA

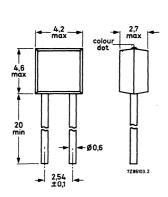
TEMPERATURE SENSING AND CONTROL TEMPERATURE COMPENSATION

	2322 640 90004	2322 640 98	3004
Resistance value at + 25 °C + 100 °C	12 ± 7% 950 ± 5%	12 ± 7% 950 ± 5%	kΩ Ω
B ₂₅ /85-value	3750	3750	K
Dissipation factor when mounted on a heat-sink	7 19	9.5 27	mW/K mW/K
Thermal time constant when mounted on a heat-sink	19 10	33 5	s s
Operating temperature range at zero power at maximum power	-10 to + 125 0 to + 55	-10 to + 12 0 to + 55	oC oC

APPLICATION

For temperature control.

DESCRIPTION


Moulded disc thermistor with negative temperature coefficient and with two solid tinned copper wires. The body colour is dark grey.

The thermistor 2322 640 98004 is provided with a metal strip for mounting.

ASSEMBLY RANGE

MECHANICAL DATA

Outlines

18.2 max 13 ±0,2 Page 19.2 Page 19.2

Fig.1 Type 2322 640 90004.

Fig.2 Type 2322 640 98004 with metal strip for mounting.

0.3 g approx.

0.5 g approx.

in any position by soldering

max. 240 °C, max. 4 s

max. 265 °C, max. 11 s

by means of the mounting strip

Marking

The thermistors have a grey dot.

Mass

Type 2322 640 90004 Type 2322 640 98004

Mounting

Type 2322 640 90004 Type 2322 640 98004

Robustness of terminations

Tensile strength Bending

Soldering

Solderability Resistance to heat

Impact

Free fall

1 m

10 N

5 N

Inflammability

Uninflammable — CCTU-01-01A specification, test 22.

PACKAGING

Type 2322 640 90004: 500 thermistors in a cardboard box. Type 2322 640 98004: 400 thermistors in a cardboard box.

Unless otherwise specified, measured in accordance with IEC publication 539.

Unless otherwise stated, all values are approximate.

	2322 640 90004	2322 640 9	8004
Resistance at + 25 °C + 100 °C	12 ± 7% 950 ± 5%	12 ± 7% 950 ± 5%	kΩ Ω
B _{25/85} -value	3750	3750	K
Temperature coefficient	-4.2	-4.2	%/K
Maximum dissipation	0.25	0.25	W
Dissipation factor when mounted on a heatsink (see note 1)	7 19	9.5 27	mW/K mW/K
Thermal time constant when mounted on a heatsink (see note 1)	19 10	33 5	s s
Heat capacity of ceramic (in air) of complete component (on heatsink)	0.028 0.13	0.028 0.3	J/K J/K
Response time (see note 2)	3	3	s
Operating temperature range at zero power at maximum power	-10 to + 125 0 to + 55	-10 to + 12 0 to + 55	25 °C °C
Dielectric withstanding voltage (RMS) between terminals and coating/strip	min. 350	min. 350	V
Insulation resistance between terminals and coating/strip at 100 V (DC)	min. 100	min. 100	$M\Omega$

- 1. Measurements made in still air with the thermistor mounted on a heatsink of 100 cm², thickness 1.5 mm, connected between phosphor-bronze wires (ϕ 1.3 mm).
- 2. The thermistor being transferred from ambient air of + 25 $^{\rm o}{\rm C}$ to a silicone oil (MS200/50) bath of + 85 $^{\rm o}{\rm C}$.

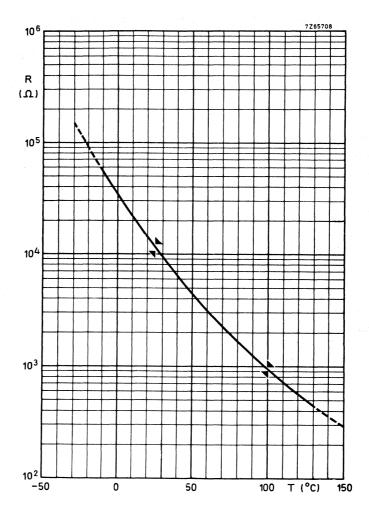


Fig.3 Typical resistance/temperature characteristics.

NTC THERMISTORS

moulded range

Features

- Excellent for surface temperature measurement
- · Metal strip for easy mounting
- Will withstand temperatures up to 200 °C
- High accuracy at 200 °C
- Minimum 300 V dielectric withstanding voltage

TEMPERATURE SENSING AND CONTROL TEMPERATURE COMPENSATION

QUICK REFERENCE DATA

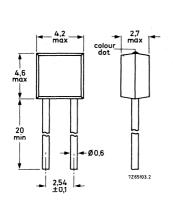
	2322 640 90005	2322 640 98	3005
Resistance value at + 100 °C + 200 °C	16.7 ± 7% 1120 ± 7%	16.7 ± 7% 1120 ± 7%	kΩ Ω
B _{25/85} -value	4300	4300	K
Maximum dissipation	0.25	0.25	W
Dissipation factor when mounted on a heat-sink	7 17.5	9.5 20.5	mW/K mW/K
Thermal time constant when mounted on a heat-sink	19 12	33 8.5	s s
Operating temperature range at zero power at maximum power	-25 to + 200 0 to + 55	-25 to + 20 0 to + 55	°C 00 °C

APPLICATION

For high temperature control.

DESCRIPTION

Moulded disc thermistor with negative temperature control and with two solid tinned copper wires. The body colour is dark grey.


The thermistor 2322 640 98005 is provided with a metal strip for mounting.

ASSEMBLY RANGE

MECHANICAL DATA

Outlines

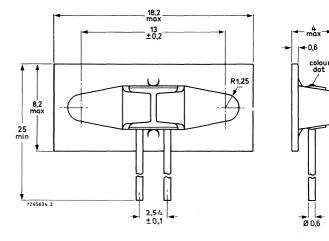


Fig.1 Type 2322 640 98005.

Fig.2 Type 2322 640 98005 with metal strip for mounting.

Marking

The thermistors have a blue dot.

Mass

Type 2322 640 90005 Type 2322 640 98005

Mounting

Type 2322 640 90005 Type 2322 640 98005

Robustness of terminations

Tensile strength Bending

Soldering

Solderability Resistance to heat

Impact

Free fall

Inflammability

Uninflammable — CCTU-01-01A specification, test 22.

PACKAGING

Type 2322 640 90005: 500 thermistors in a cardboard box. Type 2322 640 98005: 400 thermistors in a cardboard box.

0.3 g approx.

0.5 g approx.

in any position by soldering by means of the mounting strip

10 N

5 N

max. 240 °C, max. 4 s max. 265 °C, max. 11 s

1 m

Unless otherwise specified, measured in accordance with IEC publication 539.

Unless otherwise stated, all values are approximate.

	2322 640 90005	2322 640 98	005
Resistance at + 100 °C + 200 °C + 25 °C (for information only)	16.7 ± 7% 1120 ± 7% 310	16.7 ± 7% 1120 ± 7% 310	kΩ Ω kΩ
B _{25/85} -value	4300	4300	K
Temperature coefficient	-4.85	-4.85	%/K
Maximum dissipation	0.25	0.25	W
Dissipation factor when mounted on a heatsink (see note 1)	7 17.5	9.5 20.5	mW/K mW/K
Thermal time constant when mounted on a heatsink (see note 1)	19 12	33 8.5	s s
Heat capacity of ceramic (in air) of complete component	0.028	0.028	J/K
Response time (see note 2)	3	3	S
Operating temperature range at zero power at maximum power	-25 to + 200 0 to + 55	-25 to + 200 0 to + 55	oC 0 oC
Dielectric withstanding voltage (RMS) between terminals and coating	min. 350	min. 350	V
Insulation resistance between terminals and coating at 100 V (DC)	min. 100	min. 100	$M\Omega$

- 1. Measurements made in still air with the thermistor mounted on a heatsink of 100 cm², thickness 1.5 mm, connected between phosphor-bronze wires (ϕ 1.3 mm).
- 2. The thermistor being transferred from ambient air of + 25 $^{\rm o}{\rm C}$ to a silicone oil (MS200/50) bath of + 85 $^{\rm o}{\rm C}$.

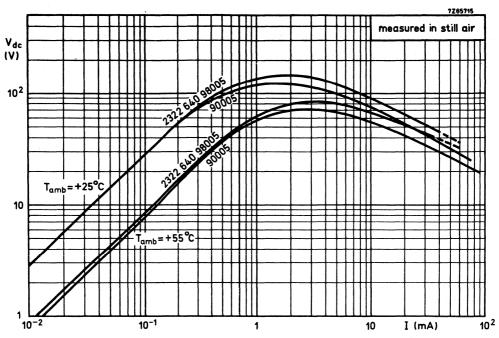


Fig.3 Typical voltage/current characteristics.

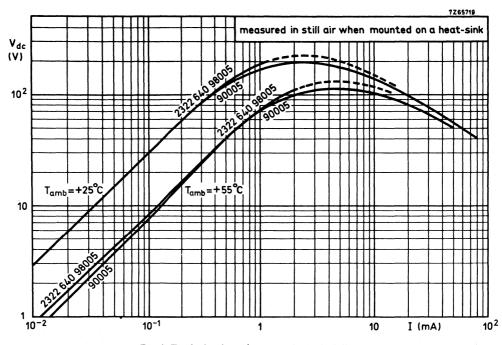
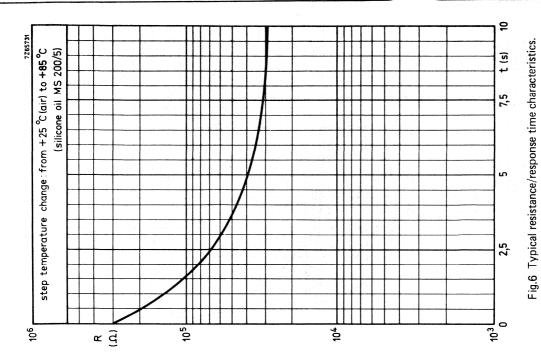
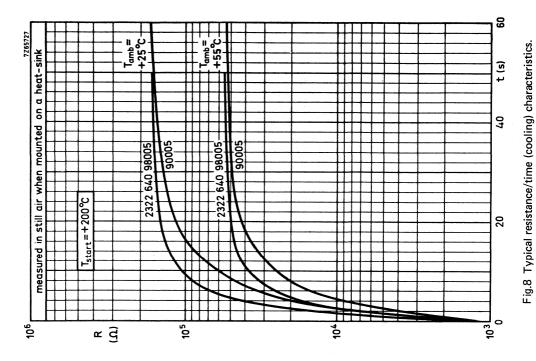




Fig.4 Typical voltage/current characteristics.

300 (°C) ⊥ , S 5 0 105 104 106 107 æ ĝ

Fig.5 Typical resistance/temperature characteristics.

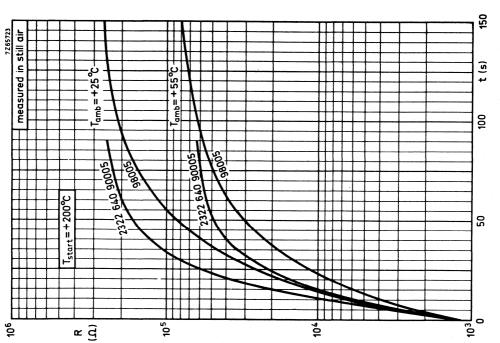


Fig.7 Typical resistance/time (cooling) characteristics.

NTC THERMISTOR

low temperature

Features

- Accurate type with several mechanical alternatives
- High stability

TEMPERATURE SENSING AND CONTROL

QUICK REFERENCE DATA

Resistance at	
−30 oC	48.5 kΩ
−20 °C	26.74 kΩ
−10 °C	15.31 kΩ
Tolerance on	
R ₃₀ value	± 5.91% (± 1 °C)
R ₂₀ value	± 5.44% (± 1 °C)
R ₁₀ value	± 5% (± 1 °C)
Response time (for information only)	0.85 s
Operating temperature range	
at zero power	-55 to + 125 °C
for short periods	max. 150 °C
at maximum power	–55 to + 55 °C

MECHANICAL DATA

Dimensions in mm

Fig.1 Component outline.

Marking: brown band on grey lacquered body

Mass: 0.21 grams approx.

PACKING

The thermistors are packed in cardboard boxes, each box containing 500 items.

Unless otherwise stated, measurements are in accordance with IEC Publication 539.

Climatic category	55/125/56
Resistance at (see note 1) - 30 °C - 20 °C - 10 °C	48.5 kΩ 26.74 kΩ 15.31 kΩ
Tolerance on (see note 1) R ₃₀ value R ₂₀ value R ₁₀ value	± 5.91% (± 1 °C) ± 5.44% (± 1 °C) ± 5% (± 1 °C)
B _{25/85} value	3977 K
Response time (see note 2) (for information only)	0.85 s
Thermal time constant, $ au$ (for information only)	8 s
Rated dissipation	250 mW
Dissipation factor, δ	7 mW/K
Operating temperature range	
at zero power for short periods at maximum power	−55 to + 125 °C max. 150 °C −55 to + 55 °C

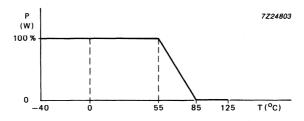


Fig.2 Tolerance curve.

- For values of nominal resistance value and tolerance at intermediate temperatures, please refer to Table 1.
- Response time in silicone oil MS 200/50. This is the time needed for the sensor to reach 63.2% of the total temperature difference when subjected to a temperature change, in this case from 25 °C in air to 85 °C in oil.

Table 1 Resistance values at intermediate temperatures

Temperature	Nominal resistance value	Tolerance	Temperature coefficient
оС	Ω	± %	- %/K
-40	91590	6.42	6.57
–35	66290	6.16	6.35
–30	48500	5.91	6.15
-25	35840	5.67	5.95
-20	26740	5.44	5.76
–15	20150	5.22	5.58
-10	15310	5.00	5.40
– 5	11730	5.21	5.24
0	9067	5.41	5.08
5	7059	5.61	4.92
10	5539	5.80	4.78
15	4376	5.99	4.64
20	3483	6.17	4.50
25	2789	6.35	4.37
30	2248	6.52	4.25
35	1823	6.69	4.13
40	1487	6.85	4.02
45	1220	7.01	3.91
50	1006	7.17	3.80
55	833.6	7.32	3.70
60	694.5	7.46	3.60
65	851.5	7.61	3.51
70	488.9	7.75	3.42
75	413.1	7.88	3.33
80	350.3	8.02	3.25
85	298.4	8.15	3.16
90	255.3	8.27	3.09
95	219.2	8.40	3.01
100	189.0	8.52	2.94
105	163.4	8.64	2.87
110	141.8	8.75	2.80
115	123.5	8.86	2.73
120	107.9	8.98	2.67
125	94.6	9.08	2.61

2322 640 90012 SPECIAL ACCURACY RANGE

ASSEMBLY VARIATIONS

catalogue number	description	outline
2322 640 90013	moulded 2322 640 90012	MBB001
2322 640 98013	moulded 2322 640 90012 with metal plate	MBB004
2322 640 97013	2322 640 90012 in screw	мввоог
2322 640 95013	2322 640 90012 in steelcap	MBB003

NTC THERMISTORS

steelcap range

Features

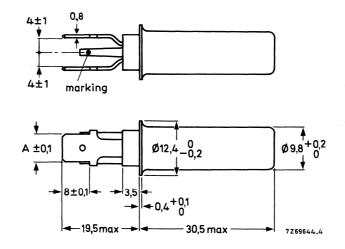
- Excellent in humid environments
- High mechanical strength
- AMP connectors for easy connection

TEMPERATURE SENSING AND CONTROL

QUICK REFERENCE DATA

		2322 640 90024/25	2322 640 90034
Resistance value at 25 °C at 85 °C at 100 °C		12 k Ω ± 5.5% 950 Ω ± 3.5%	12 kΩ ± 7% 1.475 kΩ ± 5%
B25/85 value Dissipation factor in still air			3740 K 7.5 mW/K
in still water Thermal time const	and in will aim		18 mW/K 285 s
Operating temperat			200 \$
at zero power (d	ontinuously) or 24 hours maximum)		-25 to +110 °C up to 130 °C 0 to +55 °C

APPLICATION


As a temperature sensor for water temperature control in washing machines, dish washers, electric boilers etc.

DESCRIPTION

Disc thermistor with negative temperature coefficient, mounted in a capsule of stainless steel, with two tinned brass spade connectors.

MECHANICAL DATA

Outlines

A = 6.3 mm for thermistor types 2322 640 90034/25

A = 2.8 mm for thermistor type 2322 640 90024

Fig.1 Component outline.

Marking:

2322 640 90024/25 2322 640 90034 blue dot between connectors green dot between connectors

Mass:

8 grams approx.

Mounting:

in any position

Robustness of terminations:

Tensile strength

50 N

Impact:

Free fall

1 m

Inflammability:

the devices are non-flammable

Unless otherwise stated, all measurements are in accordance with IEC Publication 539.

	2322 640 90024/25	2322 640 90034
Resistance value at 25 °C at 85 °C at 100 °C	12 kΩ ± 5.5% 950 Ω ± 3.5%	12 kΩ ± 7% 1.475 kΩ ± 5%
B25/85 value Temperature coefficient		/40 K 4.2 %/K
Maximum dissipation		25 W
Dissipation factor in still air in still water		5 mW/K 3 mW/K
Thermal time constant in still air	28	35 s
Response time (see note 1)	11	s
Temperature gradient (see note 2)	0.	02 K/K
Operating temperature range at zero power (continuously) (for 24 hours maximum) at maximum power	ur	25 to + 110 °C o to 130 °C to + 55 °C
Dielectric withstanding voltage (RMS) between terminals and capsule for 10 s between terminals and capsule for 60 s Insulation resistance between terminals and capsule	m	in. 1650 V in. 1500 V in. 100 MΩ

PACKING

The thermistors are packed in cardboard boxes, each box containing 50 items.

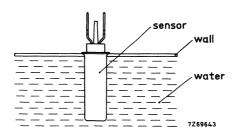


Fig.2 Method of application.

- 1. The thermistor being transferred from ambient air of +25 °C to water of +100 °C.
- The temperature gradient is the difference between the liquid (water) temperature and the temperature measured by the sensor per degree difference between liquid and connector temperatures. This difference is caused by the heat conduction through the connectors.

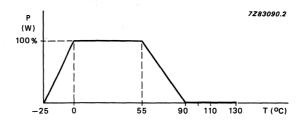


Fig.3 Power derating with ambient temperature.

NTC THERMISTOR

low temperature

Features

High accuary at 0 °C

High stability

TEMPERATURE SENSING AND CONTROL

QUICK REFERENCE DATA

Resistance at: 0 °C 25 °C	9.000 kΩ 2.756 kΩ
Tolerance on: R ₀ value R ₂₅ value	± 2% (± 0.4 °C) ± 4% (± 0.9 °C)
Response time (for information only)	1.2 s
Operating temperature range at zero power for short periods at maximum power	 40 to + 125 °C max. 150 °C −25 to + 55 °C

MECHANICAL DATA

Dimensions in mm

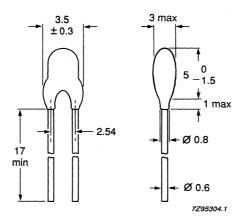


Fig.1 Component outline.

Marking: grey lacquered body, no other marking

Mass: 0.21 grams approx.

PACKING

The thermistors are packed in cardboard boxes, each box contains 500 items.

Unless otherwise stated, measurements are in accordance with IEC Publication 539.

Climatic category	40/125/56
Resistance at: 0 °C 25 °C	9.000 kΩ 2.756 kΩ
Tolerance on: R0 value R25 value	± 2% (± 0.4 °C) ± 4% (± 0.9 °C)
B ₂₅ /85 value	3977 K
Response time (see note 1)	approx. 1.2 s
Rated dissipation	250 mW
Dissipation factor, δ	approx. 7 mW/K
Operating temperature range	
at zero power for short periods at maximum power	-40 to + 125 °C max. 150 °C -25 to + 55 °C

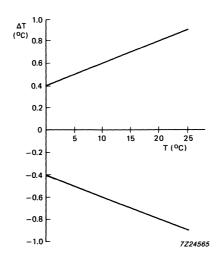


Fig.2 Tolerance curve.

Note

 Response time in silicone oil MS 200/50. This is the time needed for the sensor to reach 63.2% of the total temperature difference when subjected to a temperature change, in this case from 25 °C in air to 85 °C in oil.

long and insulated leads

Features

- Long and flexible leads for special mounting or assembly requirements
- Insulated leads for prevention of short circuits
- · Electrical features of 'accuracy line'
- Small diameter

TEMPERATURE SENSING AND CONTROL

QUICK REFERENCE DATA

Resistance at 0 °C 25 °C	66.76 kΩ 22.19 kΩ	
Tolerance on R ₀ value R ₂₅ value	± 5% ± 6.75%	
B _{25/85} value	3740 K	
Operating temperature range at zero power at maximum power	-40 to + 130 0 to + 75 °C	

DESCRIPTION

This thermistor has a negative temperature coefficient. It consists of a chip with two Ni insulated leads.

APPLICATION

Temperature sensing and control.

2322 640 90056 **ASSEMBLY RANGE**

MECHANICAL DATA

Dimensions in mm

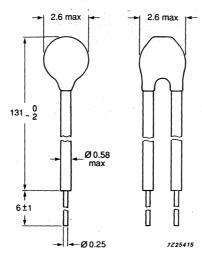


Fig.1 Component outline.

Marking

Body coated with ochre coloured epoxy lacquer

Mass

0.21 grams approximately

PACKING

The thermistors are packed in cardboard boxes, each box containing 1000 items (10 plastic bags, each containing 100 items).

ELECTRICAL DATA

Unless otherwise stated, measurements are in accordance with IEC Publication 539.

Climatic category	40/130/56
Resistance at	
0 oC	$66.76~\mathrm{k}\Omega$
25 °C	22.19 kΩ
Tolerance on	
R _O value	± 5%
R ₂₅ value	± 6.75%
B _{25/85} value	3740 K
Rated dissipation	150 mW
Dissipation factor, δ	2.6 mW/K
Operating temperature range	
at zero power	-40 to + 130 °C
at maximum power	0 to + 75 °C

low resistance range

Features

 Cost effective range with low resistance values at 25 °C TEMPERATURE SENSING AND CONTROL TEMPERATURE COMPENSATION

QUICK REFERENCE DATA

Resistance value at + 25 °C	3.3 Ω to 1.5 kΩ
B _{25/85} value	2675 to 3975 K
Maximum dissipation	0.5 W
Dissipation factor	8.5 mW/K
Thermal time constant	17 s approx.
Operating temperature range	
at zero power	–25 to + 125 ^o C
at maximum power	0 to + 55 °C

APPLICATION

Temperature compensation and temperature sensing.

DESCRIPTION

The thermistor has a negative temperature coefficient, it consists of a disc with two tinned copper wires. It is grey lacquered and colour coded, but not insulated.

MECHANICAL DATA

Outlines

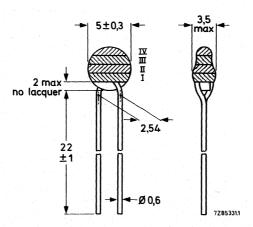


Fig.1 Component outline.

PACKAGING

500 thermistors in a cardboard box. They can be supplied on tape on request.

2322 642 6.... BASIC RANGE

Marking

The thermistors are marked with three or four colour bands in accordance with Fig. 1 and Table 1.

Mass

0.25 g approximately.

Mounting

In any position by soldering.

Robustness of terminations

Tensile strength 10 N Bending 5 N

Soldering

Solderability max. 240 $^{\circ}$ C, max. 4 s Resistance to heat max. 265 $^{\circ}$ C, max. 11 s

Impact

Free fall 1 m

Flammability

Not inflammable in accordance with IEC as described by TC50 (1979), needle flame.

Resistance to solvents

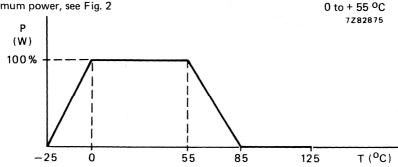
In accordance with IEC 68-2-45, resistant to R113 at Tamb.

ELECTRICAL DATA

Unless otherwise specified, measured in accordance with IEC publication 539.

Resistance at 25 °C

B_{25/85} values


Temperature coefficient

Maximum dissipation*

Dissipation factor*

Thermal time constant*

Operating temperature range
at zero power
at maximum power, see Fig. 2

see Table 1

see Table 1

see Table 1

17 s approx.

8.5 mW/K approx.

-25 to + 125 °C

0.5 W

Fig. 2 Derating curve.

^{*} Measured in the measuring set described in the French norm NF C93-271, and clamped at 10 mm from the body.

Table 1 Catalogue number 2322 642 6....

suffix of	R ₂₅	B _{25/85}	temperature coefficient		colour code (see Marking)		
catalogue number	Ω	± 5% K	%/K	1	11	111	* V
.338 .478 .688 .109 .159 .229 .339 .479 .689 .101	3,3 4,7 6,8 10 15 22 33 47 68 100	2675 2750 2800 2875 2950 3025 3100 3150 3225 3300 3375	-3,0 -3,1 -3,2 -3,2 -3,3 -3,4 -3,5 -3,5 -3,6 -3,7 -3,8	orange yellow blue brown red orange yellow blue brown	orange violet grey black green red orange violet grey black green	gold gold gold black black black black black browr	1
.221 .331 .471 .681 .102 .152	220 330 470 680 1 000 1 500	3475 3575 3650 3725 3825 3975	-3,9 -4,0 -4,1 -4,2 -4,3 -4,5	red orange yellow blue brown brown	red orange violet grey black green	brown brown brown brown red red	า 1

Replace dot in catalogue number (9th digit) by:

² for a tolerance of 10% on R_{25} , band IV is silver. 3 for a tolerance of 5% on R_{25} , band IV is gold.

low power (0.5 W range)

Features

- Low power version of standard 642 6 range
- Cost effective NTC for surge current limiting in low power comsumption conditions

SURGE CURRENT LIMITING

QUICK REFERENCE DATA

Resistance value at 25 °C 3.3 Ω to 100 Ω B_{25/85} value 2675 to 3300 K Dissipation factor 8.5 mW/K approx.

FOR DETAILED ELECTRICAL AND MECHANICAL CHARACTERISTICS, PLEASE REFER TO 2322 642 6 (low resistance range)

Table 1 Catalogue number 2322 642 6

catalogue number 2322 642 (see Note 1)	resistance at 25 °C	max. continuous power at 55 °C	B _{25/85} value	tolerance on B _{25/85} value	approx. dissipation factor
	Ω	W	K	76	mW/K
6*338	3.3	0.5	2675	5	8.5
6*478	4.7	0.5	2750	5	8.5
6*688	6.8	0.5	2800	5	8.5
6*109	10	0.5	2875	5	8.5
6*159	15	0.5	2950	5	8.5
6*229	22	0.5	3025	5	8.5
6*339	33	0.5	3100	5	8.5
6*479	47	0.5	3150	5	8.5
6*689	68	0.5	3225	5	8.5
6*101	100	0.5	3300	5	8.5
	1	1	1	i .	1

Note

- 1. Replace asterisk in catalogue number by:
 - 2 for a tolerance of 10% on R₂₅ value (band IV is silver)
 - 3 for a tolerance of 5% on R_{25} value (band IV is gold)

screw range

Features

- Easy mounting
- Rugged construction

TEMPERATURE SENSING AND CONTROL

QUICK REFERENCE DATA

Resistance value at + 25 °C	3.3 Ω to 1.5 k Ω
Dissipation factor	25 mW/K
Thermal time constant	20 s
Operating temperature range	
at zero power	-25 to + 100 °C
at maximum power	0 to +55 °C

APPLICATION

Suitable for all kinds of applications, especially when a good insulation and/or a good thermal contact with the chassis is required.

DESCRIPTION

Disc thermistor with negative temperature coefficient mounted in the head of aluminium screws M4 and with two solid tinned copper wires.

MECHANICAL DATA

Outline drawing

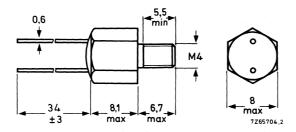


Fig.1 Component outline.

2322 642 7.... ASSEMBLY RANGE

Marking

The last 4 digits of the catalogue number are printed on the stud in accordance with the information in Table 1.

Mass

1.5 g approx.

Mounting

By means of a washer and M4 nut supplied with the device. Applied torque shall not exceed 1.2 Nm. Leads to be soldered.

Robustness of terminations

Tensile strength 10 N
Bending 5 N
Torque applied on screw 1.2 Nm max.

Soldering

Solderability max. 240 °C, max. 4 s
Resistance to heat max. 240 °C, max. 4 s

PACKAGING

100 thermistors in a cardboard box.

ELECTRICAL DATA

Maximum dissipation 0.5 W

Dissipation factor (see note 1) 25 mW/K

Thermal time constant (see note 1) 20 s approx.

Heat capacity 0.5 J/K approx.

Operating temperature range

operating temperature range

at zero power $-25 \text{ to } + 100 \text{ }^{\circ}\text{C}$ at maximum power $0 \text{ to } + 55 \text{ }^{\circ}\text{C}$

Dielectric withstanding voltage between

terminals and screw min. 100 V RMS

Insulation resistance between

terminals and screw at 100 V DC min. 100 M Ω

Also see Table 1.

For typical resistance/temperature and voltage/current characteristics, refer to data for type 2322 642 6

Note

1. Measured with screw mounted on an aluminium heatsink of 100 cm 2 , thickness 1.5 mm, in still air, $T_{amb} = \pm 25$ °C.

Table 1 Catalogue number 2322 642 7

	fix of e number	R ₂₅	B _{25/85} -value ± 5%	temperature coefficient at 25 °C
tol. 5%	tol. 10%	Ω	κ	%/K
3338	2338	3.3	2675	-3.0
3478	2478	4.7	2750	-3.1
3688	2688	6.8	2800	3.2
3109	2109	10	2875	-3.2
3159	2159	15	2950	-3.3
3229	2229	22	3025	-3.4
3339	2339	33	3100	-3.5
3479	2479	47	3150	-3.5
3689	2689	68	3225	-3.6
3101	2101	100	3300	-3.7
3151	2151	150	3375	-3.8
3221	2221	220	3475	-3.9
3331	2331	330	3575	-4.0
3471	2471	470	3650	-4.1
3681	2681	680	3725	-4.2
3102	2102	1 000	3825	-4.3
3152	2152	1 500	3975	-4.5

higher power range

Features

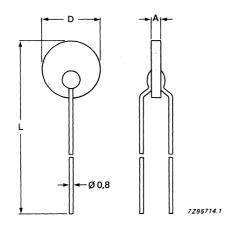
- large variety of products
- high cold resistance negligible resistance in continuous current condition

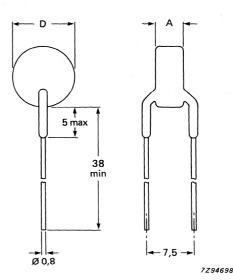
SURGE CURRENT LIMITING

QUICK REFERENCE DATA

Resistance value at 25 °C	2.5 Ω to 20 Ω
B _{25/85} value	2950 to 3600 K
Maximum current (RMS)	2.2 to 15 A
Operating temperature range	
at zero power	–25 to 155 ^o C
at maximum current	0 to 55 °C

APPLICATION


For limiting inrush current surges, preventing the blowing of fuses, provision of soft start of motors and switch protection.


DESCRIPTION

The thermistor has a negative temperature coefficient. It consists of a disc with two tinned copper wires. The thermistor body may be lacquered, depending on type (see Fig.1).

MECHANICAL DATA

Outlines

Non-lacquered types

2322 644 90005 2322 644 90013 2322 644 90008 2322 644 90025 Lacquered types

2322 644 90016 2322 644 90021 2322 644 90017 2322 644 90022 2322 644 90018 2322 644 90023 2322 644 90019 2322 644 90026

For dimensions A and D, refer to Table 1.

Fig.1 Outline of components.

2322 644 90005 to 2322 644 90026 HIGH CURRENT RANGE

MECHANICAL DATA (continued)

Marking:

none

Mass:

see Table 1

Mounting:

in any position by soldering

Robustness of terminations

Tensile strength

10 N

Bending

5 N

Soldering

Solderability Resistance to heat max. 240 $^{\rm O}$ C, duration 4 s max.

max. 265 °C, duration 11 s max.

Impact

Free fall

1 m

Inflammability

The thermistors are non-flammable, in accordance with IEC Publication 695-2-2 (1980, needle flame)

PACKING

The thermistors are packed in cardboard boxes; the smallest packing quantities per type are shown in Table 1.

ELECTRICAL DATA

Unless otherwise specified, all measurements are in accordance with IEC Publication 539.

Operating temperature range

at zero power at maximum power

-25 to 155 °C

0 to 55 °C

Table 1 Electrical data

catalogue number 2322 644	R25 ± 259	value tolerance %	δ approx.	au approx.	Imax (RMS)	R value at Imax	mass approx.	Dmax	۷		temp. coeff.	B25/85 value	smallest packing
	G	%	mW/K	s	∢	approx. Ω	grams	E	E	E	3/K	approx. K	approx. quantity K
90005	√	1	17	148	2.2	√		16	4±1	59 ± 3	-3.75	3350	100
80006	20	25			വ		7.5	23.8	4 ± 1	62 ± 3	4	3600	25
90013	20	25			9		7.5	23.8	4±1	62 ± 3	-3.9	3450	25
90016	2.5	25	14	89	8	0.056	1.67	13.5	4	38 min.	-3.3	3010	100
90017	4	25	15	79	80	0.063	2.00	13.5	4.5	38 min.	-3.3	3010	100
90018	വ	25	15.5	91	7	0.04	2.35	13.5	2	38 min.	-3.3	3010	100
90019	7	25	16.0	112	9	0.12	2.94	13.5	9	38 min.	-3.3	3010	100
90021	0	25	12.0	70	က	0:30	1.30	10	4.5	38 min.	-3.3	3010	100
90022	2	25	27	224	15	0.033	9.50	24	6.5		-3.3	3010	20
90023	2.5	25	28	240	12	0.048	10.40	24	7.0		-3.3	3010	20
90025	20	25			5		7.5	23.8	3.5 ± 1	60 ± 2	7	3600	75
90026	20	25	13	75	2.2	-	1.95	10	4.5		-3.32	2950	100

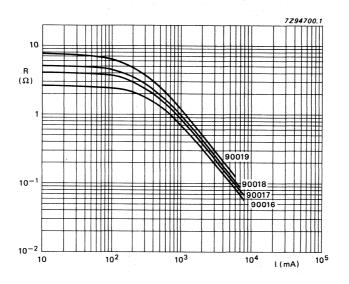


Fig.3 Typical resistance/current characteristics, types 90016 to 90019; measured in still air at 25 °C.

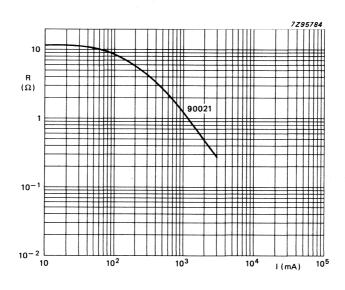


Fig.4 Typical resistance/current characteristics, type 90021; measured in still air at 25 °C.

HIGH CURRENT RANGE

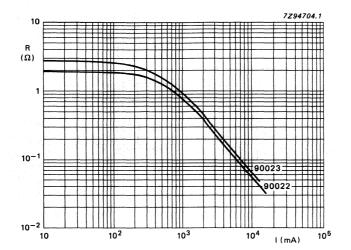


Fig.5 Typical resistance/current characteristics, types 90022, 90023; measured in still air at 25 °C.

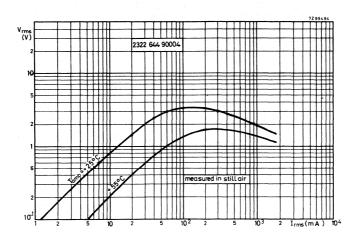


Fig.6 Typical voltage/current characteristics, type 90004; measured in still air at 25 °C.

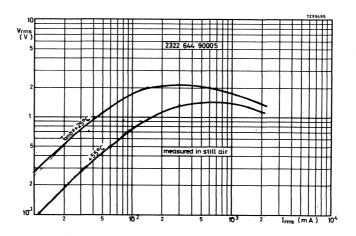


Fig.7 Typical voltage/current characteristics, type 90005; measured in still air at 25 °C.

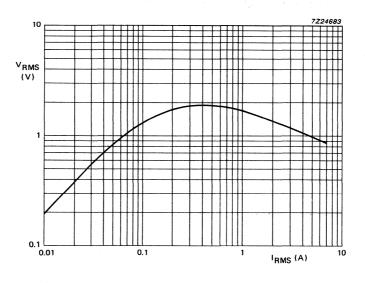


Fig.8 Typical voltage/current characteristics, type 90008; measured in still air at 25 °C.

HIGH CURRENT RANGE

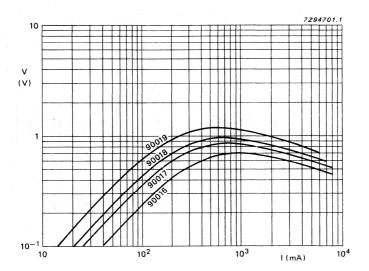


Fig.9 Typical voltage/current characteristics, types 90016 to 90019; measured in still air at 25 °C.

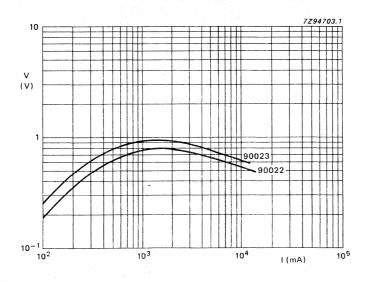


Fig.10 Typical voltage/current characteristics, types 90022, 90023; measured in still air at 25 °C.

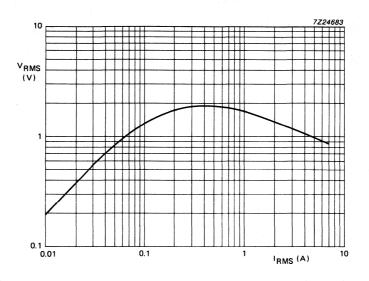


Fig.11 Typical voltage/current characteristics, type 90025; measured in still air at 25 °C.

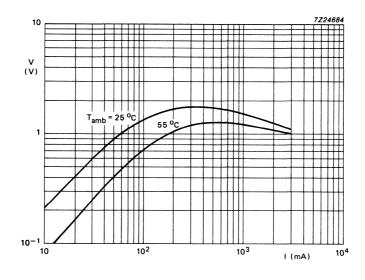


Fig.12 Typical voltage/current characteristics, type 90026; measured in still air at 25 °C.

disc without leads

Features

high cold resistance - negligible resistance in continuous current condition.

SURGE CURRENT LIMITING

QUICK REFERENCE DATA

Resistance value at +25 °C	5 Ω ± 20%
Resistance value at I _{RMS} = 2.2 A	max. 0.5 Ω
B _{25/85} -value	2975 K
Maximum current (RMS)	8 A
Operating temperature range	
at zero power at maximum power	–25 to +155 °C 0 to +55 °C

APPLICATION

For limitation of surge current.

DESCRIPTION

Disc thermistor with negative temperature coefficient, provided with reinforced contacts.

MECHANICAL DATA

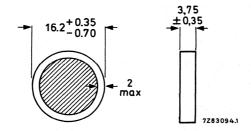


Fig. 1. Component outline.

indicating reduct in the centre of both faces, see rig. i.	Marking	red dot in the centre of both faces, see Fig.1.
--	---------	---

Mass	4.2 g	approx	imately.

Impact	Free fall, 0.1 m.		
Inflammability	Uninflammable		

PACKAGING

10 preformed sheets of polystyrene containing 75 items in a cardboard box. Resistance value and catalogue number are printed on the box.

ELECTRICAL DATA

at maximum power

Unless otherwise specified, measured according to IEC publication 539.

Resistance value at +25 °C	5 Ω ± 20%
Resistance value at I _{RMS} = 2.2 A	max. 0.5 Ω
B _{25/85} -value	2975 K
Temperature coefficient	-3.35%/K
Maximum current (RMS)	8 A
Operating temperature range	
at zero power	-25 to +155 °C

0 to +55 °C

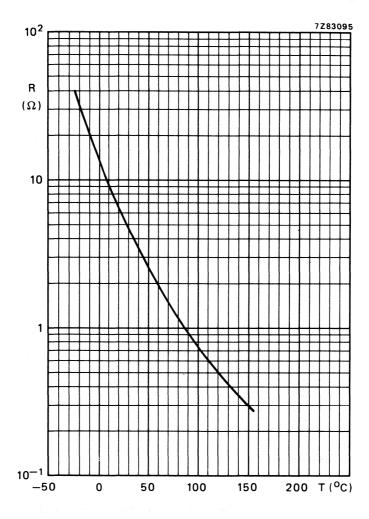


Fig. 2 Typical resistance/temperature characteristic.

accuracy line (american standard line)

Features

- Excellent accuracy over a wide temperature range (± 0.75% tolerance on B value)
- Good stability
- Good price/performance ratio

TEMPERATURE SENSING AND CONTROL TEMPERATURE COMPENSATION

QUICK REFERENCE DATA

Resistance at 25 °C	1 to 10 k Ω
B _{25/75} value	3965 K
Tolerance on B _{25/75} value	± 0.75%
Maximum dissipation	0.1 W
Response time (for information only)	1.2 s
Operating temperature range	
at zero power	-40 to 125 °C
for short periods	max. 150 °C
at maximum power	0 to 55 °C

DESCRIPTION

These thermistors have a negative temperature coefficient. They consist of a chip or disc with two tinned solid copper wires. The range comprises 4 types which have been made from one base material, selected because of its extremely stable characteristics. The various R_{25} values are determined by the varying dimensions of the chip or disc, and the choice of R_{25} values are based on the American standard. The thermistors have a non-flammable coating of protective lacquer which, in accordance with IEC 68-2-45, is resistant to most commonly used cleaning solvents.

APPLICATION

For accurate temperature sensing, measurement and control up to 150 °C.

2322 645 SERIES **BASIC RANGE**

MECHANICAL DATA

Outlines

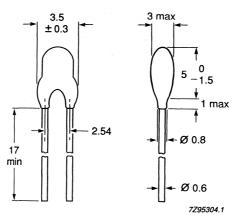


Fig.1 Component outline.

Marking

: none

Mass

: 0.22 grams

Mounting

: by soldering, in any position

Robustness of terminations

tensile strength

10 N

bending (leads are not allowed to break or become loose)

5 N

Soldering

solderability resistance to heat 240 °C max., duration 4 s max. 265 °C max., duration 11 s max.

Dimensions in mm

Impact free fall

1 m

Inflammability

non-flammable, in accordance with IEC publication 695-2-2 (1980, needle flame)

PACKING

The thermistors are packed in cardboard boxes. The smallest packing quantity is 500 items. The thermistors are also available on tape on special request.

-40 to 125 °C

max. 150 °C

0 to 55 °C

ELECTRICAL DATA

at zero power

Unless otherwise stated, measurements are in accordance with the IEC publication 539; also see Table 1.

B _{25/75} value		3965 K
Tolerance on B _{25/75} value		± 0.75%
Maximum dissipation		0.1 W
Dissipation factor, δ (for information only)		7 mW/K
Thermal time constant, τ (for information only)		11 s
Response time (see note 1) (for information only)		1.2 s
Operating temperature range (see Fig 2)		

for short periods at maximum power

P
(W)
100 % ----

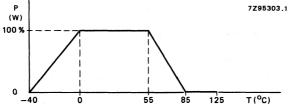


Fig.2 Derating curve.

Table 1 R₂₅ values

catalogue number 2322 645 tolerance ± 10%	R ₂₅ value kΩ
02502	5
02602	6
02802	8
02103	10
	2322 645 tolerance ± 10% 02502 02602 02802

Note:

 Response time in silicon oil MS 200/50. This is the time needed for the sensor to reach 63.2% of the total temperature difference when subjected to a temperature change, in this case from 25 °C in air, to 85 °C in oil.

2322 645 SERIES BASIC RANGE

Table 2 Stability data

CECC	IEC	test	procedure	drift (requirement)	drift (typical)*
D3 4.20.1		endurance	25 °C, 1000 hours	ΔR/R < 1%	Δ R/R = 0.1%
	68-2-1	endurance	–40 °C, 1000 hours	Δ R/R $<$ 1%	Δ R/R = 0.15%
	539-gen	endurance	100 mW, 55 ^o C 1000 hours	ΔR/R < 3%	Δ R/R = 0.5%
	68-2-2	dry heat, steady state	125 °C, 1000 hours	ΔR/R < 3%	$\Delta R/R = 0.1\%$
D1 4.19	68-2-3	damp heat, steady state	56 days at 40 °C, 90-95% RH	ΔR/R < 3%	$\Delta R/R = -0.2\%$
C2 4.14	68-2-14	rapid change of temperature	-40 °C to 125 °C, 50 cycles	ΔR/R < 2%	Δ R/R = 0.1%

 $^{^{*}}$ Typical drift based on sample products with B $_{25/75}$ value of 3965 K.

R_T values and tolerance on R_T values

These thermistors have a narrow tolerance on the B value, the result of which is to provide a very small tolerance on the nominal resistance value over a wide temperature range. For this reason the usual graphs of R = f(T) are replaced by Table 3, together with a formula with which the characteristics can be calculated with a high precision.

Formula to determine nominal resistance values.

The resistance values at intermediate temperatures can be calculated using the "Steinhert and Hart" equation:

$$R_{T} = (\frac{R_{25}}{10\,000}).e \qquad \left\{ \sqrt[3]{\sqrt{E^{2} + D} - E} - \sqrt[3]{\sqrt{E^{2} + D} + E} \right\}$$

in which $D = 4.76919 \times 10^8$ and

$$\mathsf{E} = \frac{1.14102 - 10^3/\mathsf{T}}{1.9786 \times 10^{-4}}$$

T= temperature in K.

Determination of the resistance/temperature deviation from nominal

The complete resistance deviation is obtained by combining the "R25 tolerance" and the "resistance deviation due to B tolerance".

Let X = R₂₅ tolerance;

Y = resistance deviation due to B tolerance;

Z = complete resistance deviation; then:

 $Z = [(1 + X/100) \times (1 + Y/100) -1] \times 100 \text{ or } Z = X + Y \text{ (approximation)}$

TC = temperature coefficient;

 ΔT = temperature deviation, so:

 $\Delta T = Z/TC$

Example: at 0 °C, let X = 5%, Y = 0.89%. and TC = 5.08 %/K (see Table 3), then

 $Z = \{ [1 + (5/100)] \times [1 + (0.89/100)] -1 \} \times 100$

= $\{1.05 \times 1.0089 - 1\} \times 100 = 5.9345 \text{ or } 5.93\%$

 $\Delta T = Z/TC = 5.93/5.08 = 1.167$ or 1.17 °C

So, a NTC having a R $_{25}$ value of 10 $k\Omega$ has a value of 32.51 $k\Omega$ between -1.17 and + 1.17 $^{o}C.$

2322 645 SERIES BASIC RANGE

Table 3 Resistance values at intermediate temperatures

temperature	ratio R _T /R ₂₅	deviation in R value due to B tolerance	temperature coefficient		esistance val 322 645		
°C		%	%/K	0.502	0.602	0.802	0.103
-40	32.84	2.64	6.57	164.2	197.0	262.7	328.4
–35	23.77				44.7		
-30	17.39	2.16	6.15	86.95	104.3	139.1	173.9
–25	12.85						
-20	9.589	1.71	5.76	47.95	57.53	76.71	95.89
–15	7.223						
-10	5.489	1.29	5.40	27.45	32.93	43.91	54.89
-5	4.207				and the second		
0	3.251	0.89	5.08	16.26	19.51	26.01	32.51
5	2.531						
10	1.986	0.52	4.78	9.930	11.92	15.88	19.86
15	1.569						
20	1.249	0.17	4.50	6.245	7.494	9.992	12.49
25	1.000	0.0	4.37	5.000	6.000	8.000	10.00
30	0.8060	0.16	4.25	4.030	4.836	6.448	8.060
35	0.6536						
40	0.5331	0.47	4.02	2.666	3.199	4.265	5.331
45	0.4372				-		
50	0.3606	0.77	3.80	1.803	2.164	2.885	3.606
55	0.2989		-				
60	0.2490	1.05	3.60	1.245	1.494	1.992	2.490
65	0.2085						
70	0.1753	1.31	3.42	0.8765	1.052	1.402	1.753
75	0.1481						
80	0.1256	1.57	3.25	0.6280	0.7536	1.005	1.256
85	0.1070						
90	0.09155	1.81	3.09	0.4578	0.5493	0.7324	0.9155
95	0.07861						
100	0.06775	2.04	2.94	0.3388	0.4065	0.5420	0.6775
105	0.05860						
110	0.05086	2.26	2.80	0.2543	0.3052	0.4069	0.5086
115	0.04429						
120	0.03870	2.47	2.67	0.1935	0.2322	0.3096	0.3870
125	0.03392		·				1
130	0.02982	2.67	2.55	0.1491	0.1789	0.2386	0.2982
135	0.02629						4
140	0.02324	2.86	2.43	0.1162	0.1394	0.1859	0.2324
145	0.02061						
150	0.01832	3.05	2.33	0.0916	0.1099	0.1466	0.1832

Note:

1. Replace dot in catalogue number by 2 for a \pm 10% tolerance, and 3 for a \pm 5% tolerance.

medium temperature

Features

- accurate type with several mechanical alternatives
- high stability

TEMPERATURE SENSING AND CONTROL

QUICK REFERENCE DATA

Resistance at 25 °C	10 kΩ
Tolerance on R ₂₅ value	± 3% (0.7 °C)
B _{25/75} value	3965 K
Tolerance on B _{25/75} value	± 0.5%
Response time (for information only)	1.2 s
Operating temperature range at zero power for short periods at maximum power	-40 to + 125 °C max. 150 °C -55 to + 55 °C

MECHANICAL DATA

Dimensions in mm

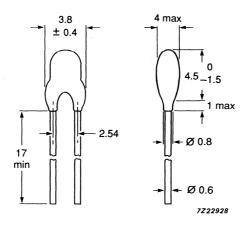


Fig.1 Component outline.

Marking: grey lacquered body
Mass: 0.18 grams approx.

PACKING

The thermistors are packed in cardboard boxes, each box containing 500 items.

ELECTRICAL DATA

Unless otherwise stated, measurements are in accordance with IEC Publication 539.

•	
Climatic category	40/125/56
Resistance at 25 °C (see note 1)	10 kΩ
Tolerance on R ₂₅ value	± 3% (0.7 °C)
B _{25/75} value	3965 K
Tolerance on B _{25/75} value	± 0.5%
B _{25/85} value	3977 K
Response time (see note 2) (for information only)	1.2 s
Rated dissipation	100 mW
Dissipation factor, δ	7 mW/K approx.
Operating temperature range	
at zero power	-40 to + 125 °C
for short periods	max. 150 °C
at maximum power	-55 to + 55 °C

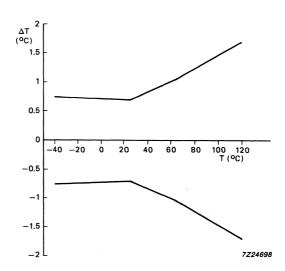


Fig.2 Tolerance curve.

Notes

- 1. For values of nominal resistance value and tolerance at intermediate temperatures, please refer to Table 1.
- Response time in silicone oil MS 200/50. This is the time needed for the sensor to reach 63.2% of the
 total temperature difference when subjected to a temperature change, in this case from 25 °C in air to
 85 °C in oil.

Table 1 Resistance values at intermediate temperatures

Temperature	Nominal resistance value	Tolerance	Temperature coefficient
oC .	kΩ	± %	- %/K
–40	328.4	4.80	6.57
–35	237.7		
-30	173.9	4.50	6.15
–25	128.5		
20	95.89	4.16	5.76
–15	72.23		
–10	54.89	3.88	5.40
 5	42.07		
0	32.51	3.60	5.08
5	25.31		
10	19.86	3.36	4.78
15	15.69		
20	12.49	3.12	4.50
25	10.00	3.00	4.37
30	8.06	3.12	4.25
35	6.536		
40	5.331	3.32	4.02
45	4.372	0.02	
50	3.606	3.52	3.80
55	2.989		
60	2.49	3.72	3.60
65	2.085	52	0.00
70	1.753	3.88	3.42
75 75	1.481	3.96	3.33
80	1.256	4.04	3.25
85	1.070	7.04	0.23
90	0.9155	4.20	3.09
95	0.7861	4.20	5.00
100	0.6775	4.36	2.94
105	0.5860	4.30	2.54
110	0.5086	4.52	2.80
		4.52	2.80
115	0.4429 0.3870	4.68	2.67
120		4.00	2.07
125	0.3392	4.84	2.61
130	0.2982	4.04	2.01
135	0.2629	4.07	2.42
140	0.2324	4.97	2.43
145	0.2061	F 4	2.22
150	0.1832	5.1	2.33

2322 645 90001 SPECIAL ACCURACY RANGE

ASSEMBLY VARIATIONS

catalogue number	description	outline
2322 645 98001	moulded 2322 645 90001 with metal plate	MBB004
2322 640 97001	2322 645 90001 in screw	
		MBB002
2322 645 95001	2322 645 90001 in steelcap	MBB003

low temperature

Features

- high accuracy over a wide temperature range
- high stability

TEMPERATURE SENSING AND CONTROL

QUICK REFERENCE DATA

Resistance value at 25 °C	5 kΩ
Tolerance on R ₂₅ value	± 3% (± 0.7 °C)
B _{25/75} value	3965 K
Tolerance on B _{25/75} value	± 0.5%
Response time (for information only)	1.2 s
Operating temperature range at zero power for short periods at maximum power	-40 to + 125 °C max. 150 °C -40 to + 55 °C

MECHANCIAL DATA

Dimensions in mm

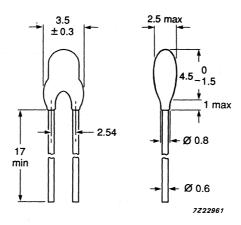


Fig.1 Component outline.

Marking: grey lacquered body, no other marking

Mass: 0.21 grams approx.

PACKING

The thermistors are packed in cardboard boxes, each box containing 500 items.

2322 645 90015 SPECIAL ACCURACY RANGE

ELECTRICAL DATA

Unless otherwise stated, measurements are in accordance with IEC Publication 539.

The state of the s	•
Climatic category	40/125/56
Resistance value at 25 °C (note 1)	5 kΩ
Tolerance on R ₂₅ value	± 3% (± 0.7 °C)
B _{25/75} value	3965 K
Tolerance on B _{25/75} value	± 0.5%
B _{25/85} value	3977 K
Response time (see note 2) (for information only)	1.2 s
Rated dissipation	250 mW
Dissipation factor, δ (for information only)	7 mW/K
Operating temperature range	
at zero power	-40 to + 125 °C
for short periods	max. 150 °C
at maximum power	-40 to + 55 °C

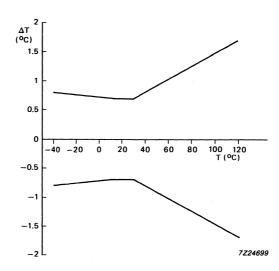


Fig.2 Tolerance curve.

Notes:

- For values of nominal resistance value and tolerance at intermediate temperatures, please refer to Table 1.
- Response time in silicone oil MS 200/50. This is the time needed for the sensor to reach 63.2% of the total temperature difference when subjected to a temperature change, in this case from 25 °C in air to 85 °C in oil.

Formula to determine nominal resistance values

The resistance values at intermediate temperatures can be calculated using the modified 'Steinhart and Hart' equation:

$$R_T = (R_{25}/10000) [^3\sqrt{(\sqrt{E} + D - E)} - ^3\sqrt{(\sqrt{E} + D + E)}]$$

in which $D = 4.76919 \times 10^8$

and E =
$$\frac{1.4102 - 10^3/T}{1.9786 \times 10^{-4}}$$

T is measured in Kelvin.

Table 1 Resistance values at intermediate temperatures

Temperature	Ratio R _T /R ₂₅	Resistance	Deviation in R value due to B tolerance	Temperature coefficient
°C		kΩ	%	%/K
-40	32.84	164.2	4.80	-6.57
-35	23.77			
-30	17.39	86.95	4.50	-6.15
25	12.85			
-20	9.589	47.95	4.16	-5.76
–15	7.223			
-10	5.489	27.45	3.88	-5.40
-5	4.207			
0	3.251	16.26	3.60	-5.08
5	2.531			
10	1.986	9.930	3.36	-4.78
15	1.569			
20	1.249	6.245	3.12	-4.50
25	1.000	5.000	3.00	-4.37
30	0.8060	4.030	3.12	-4.25
35	0.6536	4.		
40	0.5331	2.666	3.32	-4.02
45	0.4372			
50	0.3606	1.803	3.52	-3.80
55	0.2989			-
60	0.2490	1.245	3.72	-3.60
65	0.2085			
70	0.1753	0.8765	3.88	-3.42
75	0.1481			
80	0.1256	0.6280	4.04	-3.25
85	0.1070			
90	0.09155	0.4578	4.20	-3.09
95	0.07861			
100	0.06775	0.3388	4.36	-2.94
105	0.05860		raigures, su	Service Services
110	0.05086	0.2543	4.52	-2.80
115	0.04429			
120	0.03870	0.1935	4.68	-2.67
125	0.03392			

NTC THERMISTOR

medium temperature

Features

- excellent accuracy over a wide temperature range
- high stability

TEMPERATURE SENSING AND CONTROL

QUICK REFERENCE DATA

Resistance at 25 °C	5 kΩ
Tolerance on R ₂₅ value	± 2%
B _{25/75} value	3965 K
Tolerance on B _{25/75} value	± 0.5%
Response time (for information only)	1.2 s
Operating temperature range at zero power for short periods at maximum power	-40 to + 125 °C max. 150 °C -40 to + 55 °C

MECHANICAL DATA

Dimensions in mm

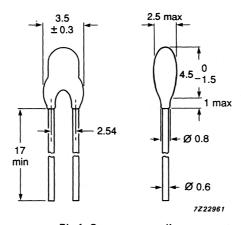


Fig.1 Component outline.

Marking: grey lacquered body

Mass: 0.21 grams approx.

PACKING

The thermistors are packed in cardboard boxes, each box containing 500 items.

2322 645 90022 SPECIAL ACCURACY RANGE

ELECTRICAL DATA

Unless otherwise stated, measurements are in accordance with IEC Publication 539.

Climatic category	40/125/56
Resistance at 25 °C (see note 1)	5 kΩ
Tolerance on R ₂₅ value	± 2%
B _{25/75} value	3965 K
Tolerance on B _{25/75} value	± 0.5%
B _{25/85} value	3977 K
Response time (see note 2) (for information only)	1.2 s
Rated dissipation	100 mW
Dissipation factor, δ	7 mW/K approx.
Operating temperature range	
at zero power	-40 to + 125 °C
for short periods	max. 150 °C
at maximum power	-40 to + 55 °C

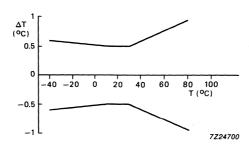


Fig.2 Tolerance curve.

Notes:

- For values of nominal resistance value and tolerance at intermediate temperatures, please refer to Table 1.
- Response time in silicone oil MS 200/50. This is the time needed for the sensor to reach 63.2% of the total temperature difference when subjected to a temperature change, in this case from 25 °C in air to 85 °C in oil.

Table 1 Resistance values at intermediate temperatures

Temperature	Nominal resistance value	Tolerance	Temperature coefficient
oC .	kΩ	± %	– %/K
-40	164.2	3.80	6.57
-35 -30	86.95	3.50	6.15
-25 -20	47.95	3.16	5.76
–15			
_10 _5	27.45	2.88	5.40
0 5	16.26	2.60	5.08
10	9.93	2.36	4.78
20	6.245	2.25	4.50
25	5.000	2.18	4.37
30 35	4.03	2.12	4.25
40 45	2.666	2.32	4.02
50	1.803	2.52	3.80
55 60	1.245	2.72	3.60
65 70	0.8765	2.88	3.42
75 80	0.6280	3.04	3.25
85 90	0.4578	3.20	3.09
95 100	0.3388	3.36	2.94
105 110	0.2543	3.52	2.80
115	3.20.0	0.02	
120 125	0.1935	3.68	2.67
130	0.1491	3.81	2.55
135 140	0.1162	3.94	2.43
145 150	0.0916	4.07	2.33

NTC THERMISTOR long leads

Features

- Long and flexible leads for special mounting or assembly requirements
- Electrical features of 'accuracy line'
- Small diameter

QUICK REFERENCE DATA

Resistance at 25 °C	10 kΩ
Tolerance on R ₂₅ value	± 5%
B _{25/100} value	3993 K ± 1.2%
Operating temperature range	
at zero power	-40 to + 125 °C
at maximum power	0 to + 55 °C

DESCRIPTION

This thermistor has a negative temperature coefficient. It consists of a chip with two Ni leads.

APPLICATION

Temperature sensing and control.

MECHANICAL DATA

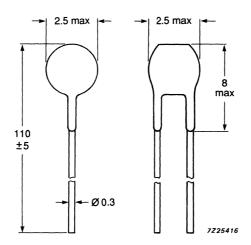


Fig.1 Component outline.

Dimensions in mm

TEMPERATURE SENSING AND CONTROL

2322 645 90028 ASSEMBLY RANGE

MECHANICAL DATA (continued)

Marking

Body coated with black coloured EPQ lacquer

Mass

0.21 grams approximately

PACKING

The thermistors are packed in cardboard boxes, each box containing 1000 items (10 plastic bags, each containing 100 items).

ELECTRICAL DATA

Unless otherwise stated, measurements are in accordance with IEC Publication 539.

Climatic category 40/125/56 Resistance at 25 $^{\rm O}{\rm C}$ 10 k Ω Tolerance on R₂₅ value \pm 5%

 $$B_{25/100}$ value $$393 \ K \pm 1.2\%$ Rated dissipation $$100 \ mW$ Dissipation factor, <math display="inline">\delta$$$1.35 \ mW/K$

Dissipation factor, δ Operating temperature range

at zero power -40 to + 125 °C at maximum power 0 to + 55 °C

	·			and the second of the second o	A STATE OF THE STA		
1					an en digitaliste	W 18 1	
	POSIT	IVE TEMP	ERATURI	E COEFFIC	IENT THERM	STORS (P	TC)

INTRODUCTION

1. GENERAL

Positive Temperature Coefficient (PTC) thermistors exhibit a high positive temperature coefficient of resistance. They differ from Negative Temperature Coefficient (NTC) thermistors in the following manner:

- The temperature coefficient of a PTC is positive only between certain temperatures. Outside this
 range, the temperature coefficient is either zero or negative.
- The absolute value of the temperature coefficient of PTC thermistors is much higher than that of NTC thermistors.

PTC thermistors are used in a variety of applications, including current limiting, temperature sensing, degaussing and for protection against overheating in equipment such as electric motors. They may also be used in level indicators, time delay devices, thermostats, and as compensation resistors. For further details, refer to the 'Applications' section.

2. ELECTRICAL COMPOSITION

PTC thermistors are prepared from BaTiO₃, by a similar method to that used in the preparation of NTC thermistors, using solid solutions of BaTiO₃. Extra electrons on the Ti ions are created by introducing foreign ions having a different valency. Use of these compounds allows two alternatives for preparation:

- 1. Substitution of trivalent ions such as La³⁺ or Bi³⁺ for Ba³⁺, or
- 2. Substitution of pentavalent ions such as Sb5+ or Nb5+ for Ti.

Both methods give identical results. If prepared in the absence of oxygen, these semiconductors exhibit a weak temperature coefficient of resistance. A strong positive coefficient is obtained by firing the ceramic samples in an oxygen rich atmosphere. This is achieved by penetrating the pores and crystal boundaries with oxygen during the cooling period following the firing process. The oxygen atoms, which have been absorbed on the crystal surfaces, attract electrons from a thin zone of the semi-conducting crystals. This forms electrical potential barriers consisting of a negative surface charge with, on both sides, thin layers having a positive space charge resulting from the now, uncompensated, foreign ions. These barriers cause an extra resistance in the thermistor, exhibited by the formula:

$$R_b \alpha = \frac{1}{a} e^{V_b/kT}$$
 (α = directly proportional to)

where, 'a' represents the size of the crystallites, thus 1/a is the number of barriers per unit length of the thermistor, and V_b represents the potential of the barriers. Since V_b is inversely proportional to the value of the dielectric constant of the crystals, R_b is extremely sensitive to variations in the dielectric constant. Such variation in the dielectric constant is a special property of materials having a ferroelectric nature as can be found in the compound BaTiO3 and its solid solutions. If their ferroelectric Curie temperature (θ) is exceeded, the relative dielectric constant decreases with the temperature increase in accordance with the relationship shown overleaf:

$$\epsilon_{\rm r} = \frac{\rm C}{{\rm T} - \theta}$$

where C has an approximate value of 10⁵ K. As a result, the resistivity increases sharply just above the Curie temperature. Below the Curie temperature, the barriers are weak or absent, partly as a result of the high effective dielectric constant of BaTiO₃ in strong fields, and partly as a result of the spontaneous polarisation of the crystals which may compensate the boundary changes.

The electrons are captured at the boundaries and gradually liberated in proportion with the increase in body temperature of the PTC with respect to its switching temperature, causing the potential barriers to decrease in strength. This means that the PTC loses its properties and may eventually respond in a similar fashion to a NTC if the temperature becomes too high. The applications of a PTC are, therefore, restricted by a certain temperature limit.

Since the PTC effect is caused by crystal boundary barriers, the extra resistance Rb is shunted by a high parallel capacitance Cb. This leads to frequency dependence of an extra impedance Zb up to 5 MHz. The characteristic properties described in the following paragraphs are thus restricted to this frequency range.

3. ELECTRICAL PROPERTIES

Resistance/temperature characteristics

Figure 1 shows a comparison of typical resistance/temperature characteristic curves for PTC and NTC thermistors.

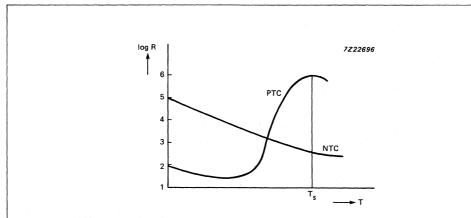
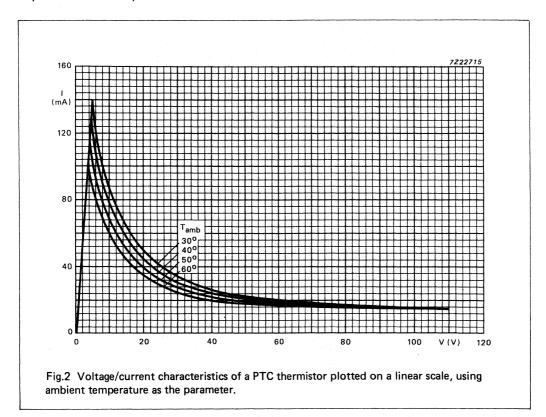



Fig.1 Typical resistance/temperature characteristic curves for PTC and NTC thermistors.

Voltage/current characteristics

Static voltage/current characteristics display the current limiting ability of PTC thermistors. Up to a certain value of voltage, the V/I characteristics follow Ohm's law, but the resistance is increased when the current passing through the PTC causes it to heat up and reach its switching temperature (see Fig.2). The V/I characteristic is dependent on ambient temperature and the heat transfer coefficient with respect to ambient temperature.

As can be seen from Fig.2, the characteristics are plotted on a linear scale, however it is more common to plot the characteristics on a logarithmic scale (see Fig.3), since it gives a clearer view of the overall response.

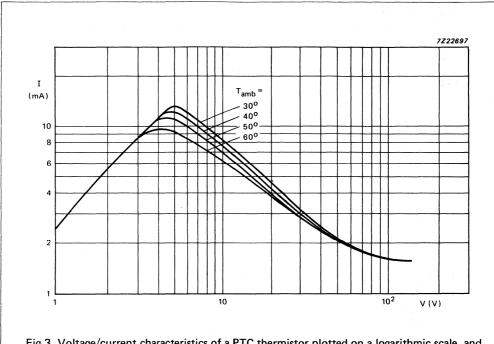


Fig.3 Voltage/current characteristics of a PTC thermistor plotted on a logarithmic scale, and using ambient temperature as the parameter.

It is possible to calculate the peak of the V/I characteristic accurately if the R/T characteristic and the dissipation factor (D) are known.

The dissipation factor (measured in mW/°C) is the ratio at a specified ambient temperature of a change in power dissipation in a thermistor, to the resultant body temperature change. By convention, the dissipation factor can only be calculated at the peak of the V/I curve, also making use of the corresponding point on the R/T characteristic.

By definition:

- the electrical power injected in the PTC thermistor is:

$$P = I^2 R$$

where R is the resistance (before switching) at Tamb

 $-\$ the power dissipated by the ceramic is given by:

$$D (T_s - T_{amb})$$

where T_S is the switch temperature and T_{amb} is the ambient temperature, then,

$$I^2 R = D (T_s - T_{amb})$$

Note: This equation is only valid for temperatures having a value less than $T_{\mbox{\scriptsize S}}$.

The trip current (I_t) is defined as the minimum guaranteed current which will cause the thermistor to switch, and can be calculated using the formula:

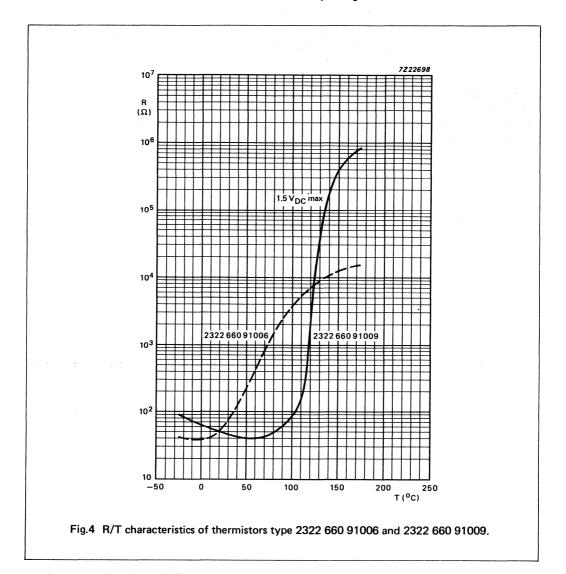
$$I_t^2 R = D \left[T_s - (T_{amb} + \omega) \right]$$
, hence:

$$I_{t} = \sqrt{\frac{D[T_{s} - (T_{amb} + \omega)]}{R}}$$

where R is the PTC resistance at Tamb.

Normally, a security margin of + ω °C is maintained in order to assure thermistor switching due to inaccuracies in the values of T_s and T_{amb}.

The non-trip current (I_{nt}) is defined as the guaranteed maximum current at which the thermistor will not switch, and is given by:


$$I_{nt}^2 R = D[T_s - (T_{amb} - \omega)]$$
, hence:

$$I_{nt} = \sqrt{\frac{D[T_s - (T_{amb} - \omega)]}{R}}$$

A security margin of $-\omega$ °C is maintained to ensure that the thermistor will not switch.

155

The slope of the R/T characteristic is designated by a series of production parameters. The relationship between R/T and V/I characteristics is demonstrated clearly in Figs 4 and 5.

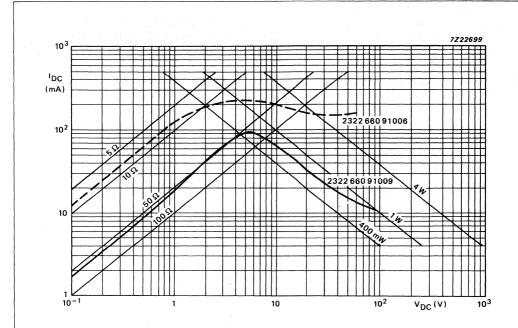


Fig.5 Typical V/I characteristics of thermistors type 2322 660 91006 and 2322 660 91009, measured in still air at 25 °C.

PTC thermistor in series with a load

It can be shown from the V/I characteristics that, because of the non-linearity of the PTC curve, three working points are possible when a load R is connected in series with a PTC (see Fig.6). The characteristic of the load is a straight line intersecting the voltage co-ordinates at the supply voltage, Va. P1 and P2 are stable working points; P3 is unstable.

When the voltage Va is applied to the series connection, equilibrium is reached at P1, a point with a relatively high current. P2 can only be reached when the peak of the V/I curve lies below the load characteristic. This may happen in a number of cases:

- V_a increases, see Fig.7.
 the ambient temperature increases, see Fig.8
- 3. the load resistance decreases, see Fig.9.

It can therefore be seen that the PTC thermistor provides excellent protection properties, limiting the load to a safe value if the supply voltage, temperature or current exceeds a critical value.

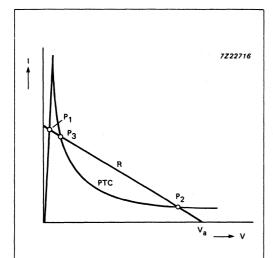


Fig.6 PTC thermistor in series with a load showing the possible working points.

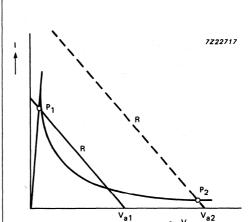


Fig.7 PTC thermistor in series with a load showing the influence of the supply voltage Va.

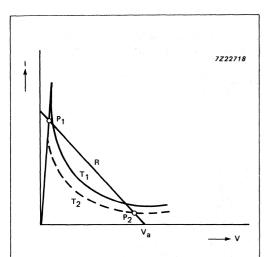
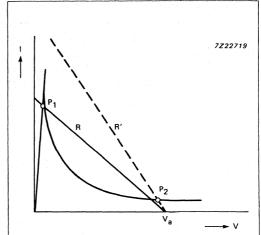
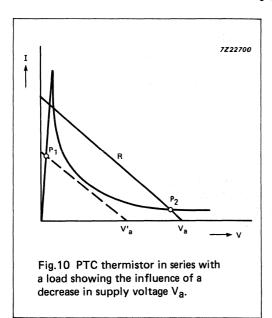
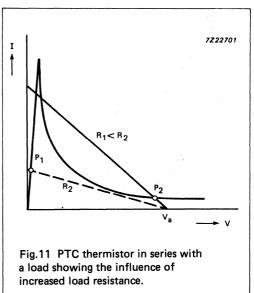


Fig.8 PTC thermistor in series with a load showing the influence of the ambient temperature.

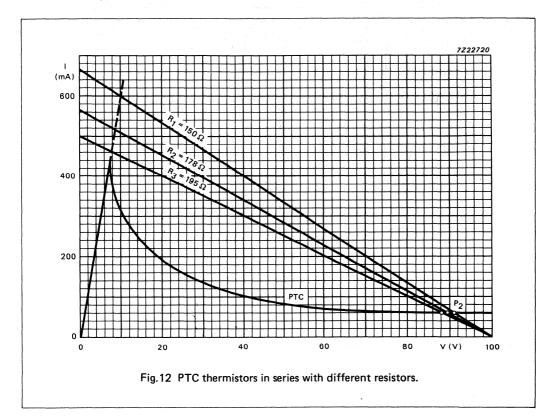



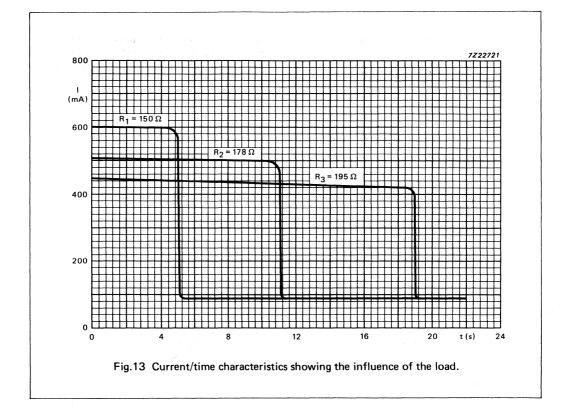

Fig.9 PTC thermistor in series with a load showing the influence of the load resistance.

Resetting resistance

When the PTC thermistor is switched i.e. its temperature rises above the switching temperature T_s , it can only return from P_2 to P_1 if the load line lies below the V/I characteristic curve. This means that:

- 1. either the supply voltage V_a decreases (at constant load resistance), see Fig.10, or
- 2. the load resistance increases (at constant voltage), see Fig.11.

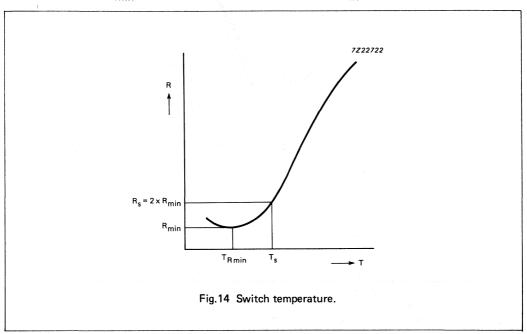




Note: When the temperature of the PTC thermistor is greater than T_s (i.e. the thermistor is in its tripped state), it will heat up causing the ambient temperature to increase (as shown in Fig.8). This must be taken into account when calculating the value of load resistance (i.e. the resistance of the PTC).

Current/time characteristics

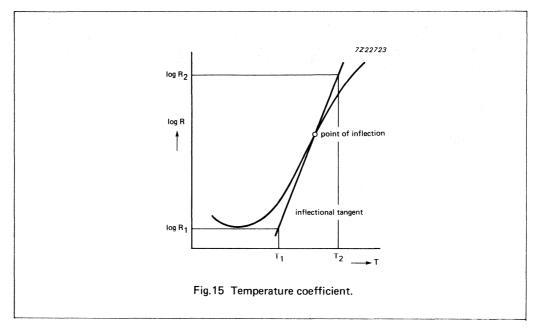
If a PTC thermistor is connected in series with a resistance of such a value that the peak of the V/I curve lies under the load line, the PTC will heat up until the stable working point (P₂) is reached (see Fig.12). The time taken to reach this point is dependent on the value of load R (see Fig.13) and the ambient temperature.



EXPLANATION OF TERMS

Switch temperature (T_s)

The switch temperature is the temperature at which the resistance R_s is equal to twice the minimum resistance R_{min} (see Fig.14), so at $T_s > T_{Rmin}$, $R_s = 2$ R_{min} .


Temperature coefficient (α)

The temperature coefficient $\alpha = \frac{1}{R} \frac{dR}{dT}$

For R-T curves plotted on a log R-T scale:

$$\alpha = \frac{d \ln R}{dT} = \frac{1}{0.4343} \cdot \frac{d \log R}{dT}$$

In the data sheets, the maximum temperature coefficient (α) is given; this is measured at the point of inflection of the log R-lin T characteristic, i.e. the point where $d^2 \log R/dT^2 = 0$ (see Fig.15).

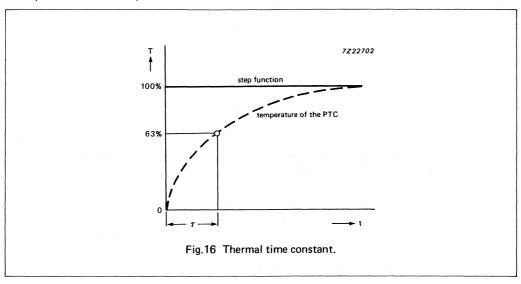
When one resistance decade is taken ($R_2 = 10 R_1$), the formula becomes:

$$\alpha = \frac{100}{0.4343} \times \frac{1}{T_2 - T_1} \%/K$$

Trip time

The trip, or response time is defined as the time taken for the PTC thermistor to reach its switching temperature at a constant voltage. This time period is also equal to the time taken for the current to be reduced by a factor of 2.

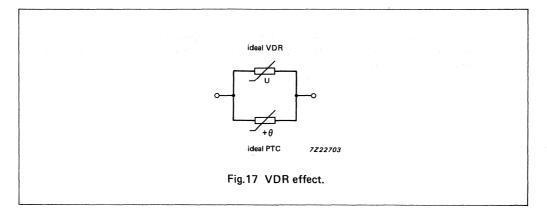
The trip time (t_s) can be calculated using the formula:

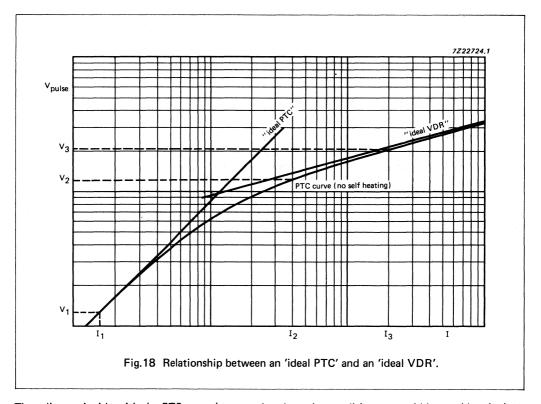

$$t_s = \frac{h.v.(T_s - T_{amb})}{I_t^2.R_{25} - D(T_s - T_{amb})}$$

where:

- v is the volume of the ceramic in mm³
- R₂₅ is the resistance at 25 °C
- It is the trip current
- the specific heat of the ceramic $h = 2.5 \times 10^{-3}$ J/OC/mm³

Thermal time constant (τ)


The thermal time constant is the time required for a thermistor to convert 63.2% of the total difference between its initial and final body temperature when subjected to a step function change in temperature under zero power conditions.


Voltage dependence (VDR effect)

PTC thermistors exhibit voltage dependence. The higher the voltage applied, the more the R/T curve deviates from the R/T characteristic at 'zero voltage' (measured at a negligibly small voltage). This voltage dependancy can be demonstrated by applying a pulsed voltage to the thermistor and then measuring the R/T characteristic.

This effect can be explained with the aid of a parallel connection of an 'ideal PTC', having no voltage dependence, and an 'ideal VDR'.

Plotted on a log $I-\log V$ scale at an arbitrary constant temperature, the ideal PTC and the ideal VDR characteristics are straight lines (see Fig.18).

These lines coincide with the PTC curve (measured under pulse conditions to avoid internal heating) at low voltages where the ohmic behaviour is the deciding factor, and at high voltages where the VDR effect becomes more significant.

HOW TO MEASURE PTC THERMISTORS

Since PTC thermistors often exhibit a very high temperature coefficient, especially at high temperatures, measurement at high temperature must be carried out with particular care. Even an error of 0.1 K can give errors of a few percent in resistance value. Specially calibrated thermometers must be used. Stem correction must be applied — deviations of more than 0.1 K may result if it is not used.

The stem correction formula for fluid thermometers is:

$$T_c = T_o + F \cdot L(T_o - T_m)$$

where:

T_c = corrected temperature

T₀ = observed temperature

T_m = mean temperature of exposed stem

L = length of the exposed column in K above the surface of the substance whose temperature is being determined

F = correction factor.

F is approximately equal to 0.00016 for a mercury thermometer.

Example

If T_0 = 110 °C, T_m = 70 °C, and L = 50 K, substitution in the above formula will give the result, T_c = 110.32 °C.

Without stem correction, an error of more than 0.3 K would have been made.

Note: The resistance should be measured using a voltage of less than 2 V, in order to ensure that the PTC is not heated, and also to diminish voltage dependent effects.

Tolerances

The resistances of standard PTC thermistors are generally specified at

- a. 25 °C
- b. a temperature having a greater value than the switch temperature.

The switch temperature is quoted in the relevant data sheets.

For each standard type, tolerances are specified for R₂₅ and the high temperature resistance. The tolerance on switch temperature is not specified; normally it is only a few K.

Special types are often specified in accordance with the requirements for the particular application. For example, PTC's for motor control may be specified at a high temperature with a close tolerance, whilst the tolerance below the switch temperature, being of less importance, is much greater. PTC thermistors for current limiting applications are, in most instances, specified in terms of current and voltage.

IMPORTANT NOTES:

- the specification and tolerances of PTC thermistors depend to a great extent upon the application in which the device is to be used. They are not limited to the standard range detailed in this handbook.
- IF SPECIAL PTC CHARACTERISTICS ARE REQUIRED WHICH CANNOT BE FOUND IN THIS HANDBOOK, CONSULT THE MANUFACTURER SINCE REQUIREMENTS MAY BE FULFILLED BY A NON LISTED DEVICE.

APPLICATIONS

The applications for PTC thermistors can be divided into five main categories:

- 1. overload (current sensitive action)
- 2. degaussing
- 3. heating
- 4. motor start (e.g. compressors)
- 5. temperature sensing.

These applications are based on two principles:

- a. applications where the temperature (hence the resistance) is primarily determined by the current flowing through the thermistor
- applications where the temperature is primarily determined by the temperature of the ambient medium.

CAUTIONS

DO NOT APPLY A VOLTAGE ABOVE $V_{\mbox{\scriptsize MAX}}$ TO THE PTC SINCE THIS MAY DESTROY THE THERMISTOR.

DO NOT CONNECT PTC THERMISTORS IN SERIES TO OBTAIN HIGHER VOLTAGES OR WATTAGES, SINCE THIS MAY CAUSE AN INDIVIDUAL PTC TO HEAT UP FASTER THAN THE OTHER(S), RESULTING IN TOO HIGH A VOLTAGE ACROSS THE PTC IN QUESTION.

APPLICATION EXAMPLES

1. Overload protection (current sensitive action)

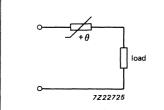


Fig. 19 Current limiting.

Note

As soon as the current increases, the PTC limits it to a safe value.

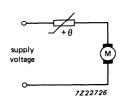


Fig.20 Protection of a stalled electric motor against overheating.

Note

The increased current heats the PTC to its switch temperature. As a result, the total dissipated power is reduced to a safe value. The example shown could also be used as protection against overheating in transformers, lamps, printed circuit boards, rechargeable batteries, power supplies etc.

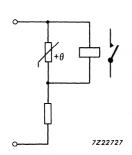


Fig.21 Delaying action of relays.

Note

After applying the voltage for a certain time period, the relay is activated.

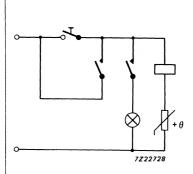


Fig.22 Time delay circuit.

Note

When the switch is operated, the relay is activated and the lamp is illuminated. After a certain time period, the relay is de-activated due to the increase in resistance of the PTC.

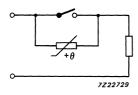


Fig.23 Spark suppression circuit.

Note

A PTC fitted in parallel with the switch acts as a spark suppressor. When the switch opens, the low resistance of the cold PTC prevents sparking.

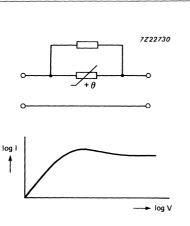
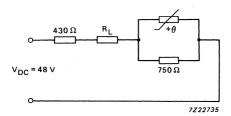
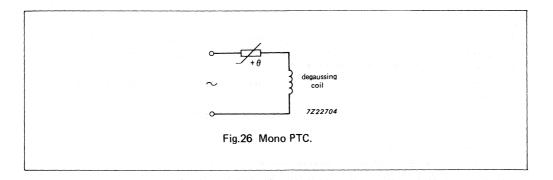


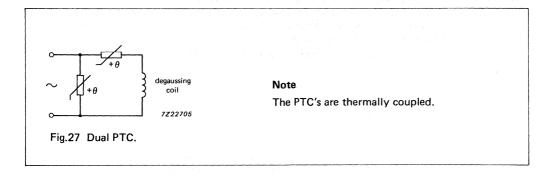
Fig.24 Current stabilization.

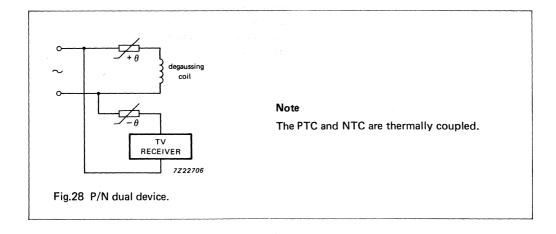
Note

By using a resistor fitted in parallel to the PTC, a current stabilization circuit is obtained that compensates slowly varying supply voltages.




Fig.25 Line resistance (R_L) compensation.


One very useful application area is the use of this circuit to provide line resistance compensation for variations in telephone lines (see Fig.25).


2. Degaussing

Degaussing is the term given to the method employed to demagnetise the tube of a colour television to prevent colour impurities appearing on the screen. PTC's are used in conjunction with the degaussing coil. There are three possible circuit combinations:

- A single PTC in series with the degaussing coil (see Fig.26). This is known as a MONO degaussing PTC.
- Two PTC's may be used to reduce the final steady coil current to a very low value (see Fig.27).
 The second PTC acts as a heater to increase the resistance of the series PTC. This is known as a DUAL degaussing PTC.
- The heater action outlined above may also be achieved using a Negative Temperature Coefficient (NTC) thermistor to act as an inrush current limiting device, in conjunction with a PTC (see Fig.28).
 This is known as a P/N DUAL degaussing device.

3. Heating

PTC thermistors may be used in a wide range of industrial, automotive and consumer heating applications, including bi-metal strips, soldering irons, fuel pre-heating, car mirror and doorlock defrosting, hair curling irons, warming plates etc.

The thermistors are particularly suitable for heating applications; they exhibit the following properties:

- the ceramic elements used are self-regulating; they do not require thermostats for limiting or stabilizing their temperature
- they heat up very quickly
- the power dissipated is virtually independent of the supply voltage
- they do not cause switch interference to the mains supply or other apparatus.

The behaviour of PTC heating elements cannot be easily concluded from the R/T or V/I characteristics, since the temperature of the element is not homogeneous during operation. In addition, the method of mounting has a considerable influence in a number of factors including dissipated power, the relevant temperature and the extent of power regulation.

A typical temperature profile across a heating element is shown in Fig.29.

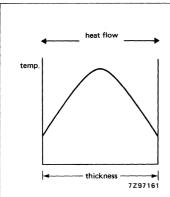


Fig.29 Typical temperature profile across a ceramic heating element.

Note

The uneven temperature profile across the ceramic is due to the cooling effect on the faces of the ceramic. This means that the inner temperature is higher than the temperature on the surface of the ceramic.

Heat transfer takes place from the inside to the outside of the ceramic.

It is possible to construct a thermal equivalent circuit of a PTC heating system. The properties of such a circuit may be considered when making calculations i.e. the thermal equivalent circuit becomes a 'simulator' for the actual circuit. Hence, this simulator may be used to provide an analysis of the proposed circuit.

Table 1 shows an analogy between electrical and thermal parameters and Fig.30 illustrates a thermal equivalent circuit.

Table 1 An analogy between electrical and thermal parameters

	electrical		thermal		
	parameter	unit	parameter	unit	
parameters	resistance (R)	Ω	thermal resistance (R _{th})	K/W	
	voltage (V)	V	temperature (T)	oC	
	current (I)	А	power	w	
	capacitance (C)	F	thermal capacity (H)	J/K	
ohm's law (R, R _{th})	R = V/I		R _{th} = T/P	**************************************	
differential equation (C, H)	V = 1/C∫ldt		T = 1/H∫Pdt		

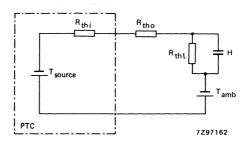


Fig.30 Thermal equivalent circuit.

Notes

- 1. T_{source} (°C) is approximately equal to T_s + 25 °C.
- 2. Tamb is the ambient temperature.
- 3. Rthi is the internal thermal resistance of the PTC. This value is mainly determined by:
 - dimensions of the ceramic
 - thermal conductivity of the ceramic ($\lambda = 2.4 \text{ W/mK}$)
- R_{tho} is the thermal resistance between the surface of the ceramic and the object to be heated, and is calculated from:
 - the thermal resistance between ceramic and isolator
 - the thermal resistance of the isolator
 - the thermal resistance between isolator and the object to be heated

For optimum heating, the value of Rtho must be kept as low as possible.

- 5. Rthl is the thermal resistance of the object to be heated.
- 6. H is the thermal capacity of the object to be heated.

The thermal circuit shown in Fig.30 can be used to:

- perform simple calculations on the heating system due to the similarities between the equivalent circuit and the electrical circuit
- acquire an insight into the operation of a PTC thermistor
- predict the influence of certain parameters on the circuit.

The power dissipated in stable conditions may be calculated using the thermal equivalent of Ohm's law, i.e.:

$$P = \frac{T_{source} - T_{amb}}{R_{thi} + R_{tho} + R_{thl}}$$
 (W)

The temperature of the object is:

$$T_1 = \frac{R_{thl}}{R_{thl} + R_{tho} + R_{thl}} \times [T_{source} - T_{amb}] + T_{amb}$$
 (°C)

The time constant of the system is:

$$H \times \frac{R_{thl} \times (R_{thi} + R_{tho})}{R_{thl} + R_{thi} + R_{tho}}$$
 (s)

Characteristics of PTC heaters

The relationship of current against temperature and time is shown in Fig.31. It can be seen that the temperature rises to its working point (F) over a period of up to 20 minutes if mounted in a standard test jig.

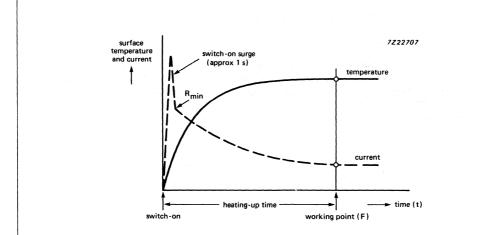
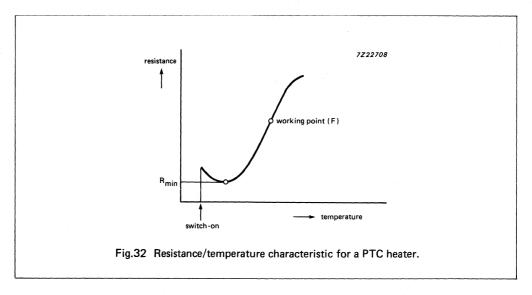
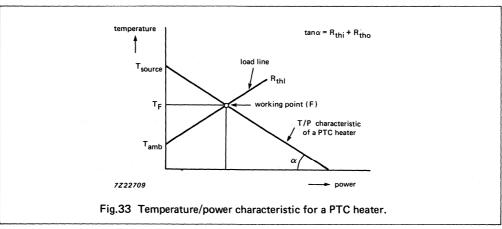
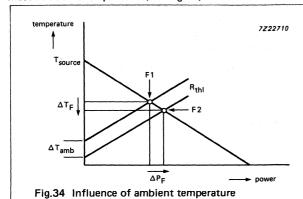



Fig.31 Surface temperature and current as a function of time for a PTC heater.

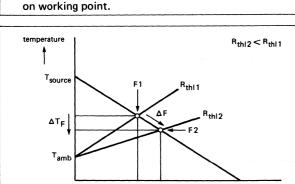

Note

At initial switch-on, the current will be high due to the low resistance of the PTC, but the current will gradually fall to a lower working level.

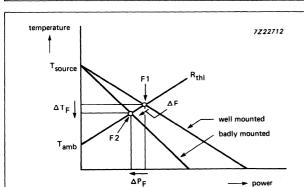
It can be seen from Fig.31 that, for normal mounting conditions, the initial current surge lasts for approximately 1 second, until the resistance value R_{min} is reached. The PTC heater then continues to heat up. The relationship between resistance and temperature is shown in Fig.32.


The working point (F) should be selected to lie approximately half way up the slope of the R/T curve. The working point may be calculated using the temperature/power characteristic, which determines the heating power of the device. Provided the voltage is kept constant, it can be shown from the thermal equivalent circuit (Fig.30) and the formula for the calculation of power, that the temperature/power characteristic is linear as demonstrated in Fig.33.

The working point (F) is the intersection of the temperature/power characteristic with the load line expressing the thermal load R_{thl}. This load line is determined using the thermal version of Ohm's law:


$$R_{thI} = \frac{T_{source} - T_{amb}}{P}$$

The working point shown in Fig.33 shifts due to changes in ambient temperature, load variation and various mounting methods (see Figs 34, 35 and 36). For optimum heat transfer with respect to the thermal load, the T/P curve must be as near to the horizontal plane as feasible, i.e. the value of Rtho must be as small as possible (see Fig.36).


Note

If the value of Tamb falls, the value of TF falls and PF increases.

Note

If the value of the thermal resistance of the load falls, TF falls and PF increases.

Fig.36 Influence of mounting method on working point.

Fig.35 Influence of load variation on

working point.

Note

- power

power

With bad mounting, Rtho increases so the T/P curve becomes steeper, the value of TF falls and PF increases.

It can be demonstrated from Fig.36 that the method of mounting ceramic or tubular assembled elements is very important. Obviously, mounting requirements vary from one user to another. The Applications Department is always available to advise on the best mounting methods for specific applications. However, for the most effective use of PTC heaters, it is essential that the thermal coupling is as efficient as possible.

With tubular assembled elements, the thermal coupling will also be affected by the characteristics and thickness of the materials used in the manufacture of the tubular mantle.

When an encapsulated heating element is mounted in an aperture which is too large, the thermal coupling will be poor, which results in a high value of R_{tho}.

When a heating element is not heavily loaded (e.g. in applications such as hair curlers, represented by line $R_{th|1}$ in Fig.35), the influence of poor mounting is not so severe as if the system were heavily loaded (e.g. in applications such as oil burners, represented by line $R_{th|2}$ in Fig.35).

Application examples

a. Heating plate.

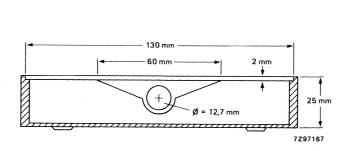


Fig.37 Heating plate.

Note

The aluminium plate measures $130 \times 130 \times 2$ mm. The profile of the heating curves when subjected to a load is shown in Fig.38.

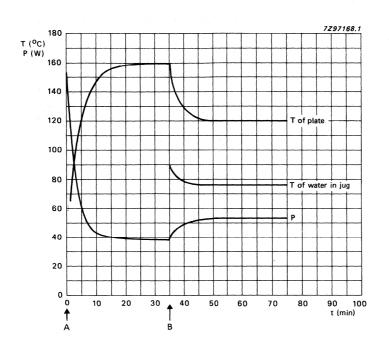
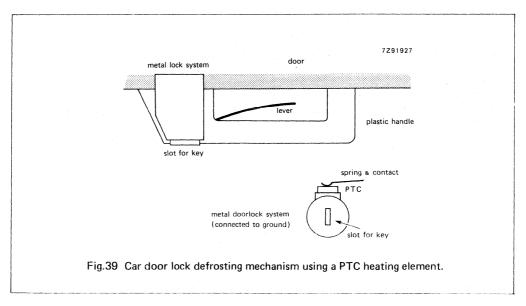


Fig.38 Profile curves of heating plate when subjected to a load.

Notes

Point A = heating plate switched on, unloaded.

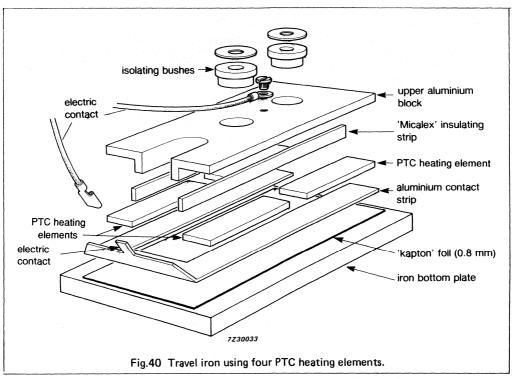

Point B = loaded with pyrex jug containing 1 litre of water at 90 °C; ambient air temperature = 20 °C (constant).

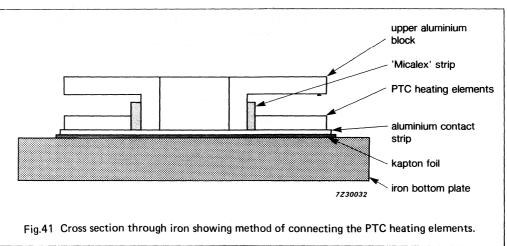
PTC's INTRODUCTION

b. Car door lock defrosting system.

A car door handle with a PTC heating element mounted on the lock mechanism is shown in Fig.39. A lever fitted behind the door handle activates a spring contact to connect the element to the car's 12 V supply. The flat PTC element is uninsulated and makes good thermal contact with a flat part of the lock close to the mechanism, ensuring that a rapid heating action will take place when the supply is connected.

As with all PTC devices, the dissipated power is at its greatest at low temperatures. However, for the majority of PTC's, there is a minimum resistance which remains constant in temperatures at, or below 0 °C. Hence, even in extreme environments, the maximum power dissipation is limited.

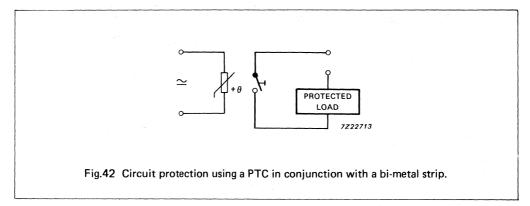



c. Slim travel iron.

The iron, shown in Fig.40, uses four naked ceramic PTC heating elements mounted on an iron bottom plate. The thermistors are positioned such that the heat generated from both sides of each thermistor is transferred to the bottom plate (see Fig.41). The electric contacts are connected directly to the four thermistors, contributing to a fast warm-up time of the iron.

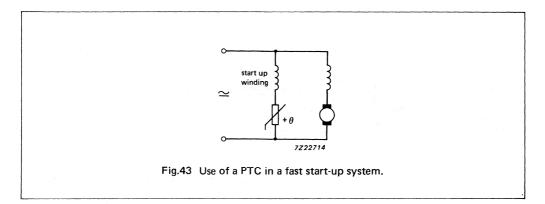
Measurements show a heating up time of 140 seconds to reach a temperature of 200 °C. Using a mains supply of 220 V RMS, the total current drawn is 260 mA. The flexibility of using PTC heating elements is further demonstrated by using a supply of 110 V RMS, which then gives a heating time to 200 °C of 210 seconds. The final temperature, after 20 minutes is approximately 220 °C.

PTC's INTRODUCTION



PTC's INTRODUCTION

d. Circuit protection using a bi-metal strip heated by a PTC


A bi-metal strip may be equipped with a PTC heating element to construct a safety switch. The bi-metal used may be of the 'reset' type, so that, in effect, the combination of the bi-metal strip and PTC forms a switch with a memory, and allows galvanic separation between the switch and the PTC. If required, the switch may be remotely controlled.

4. Motor start

The following application is often used in situations where a quick response is required when starting motors, e.g. compressor motors for refrigerators, deep freezers and air-conditioning units.

To ensure a quick response time, these motors are often fitted with an extra winding which needs to be switched off once the steady state condition is attained. This extra winding is connected in series with a 'motor start' PTC (see Fig.43). During the start-up phase, extra current is delivered and the PTC gradually heats up, which causes an increase in its resistance and conversely, the current through the start-up winding is reduced to a negligible value.

5. Temperature sensing

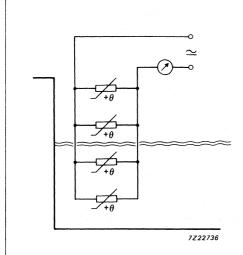


Fig.44 Liquid-level indication.

Note

The PTC thermistors located above the fluid level will be heated to a temperature greater than T_{switch} . When immersed they are cooled such that their resistance value is reduced.

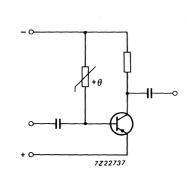


Fig.45 Temperature compensation of transistor circuits.

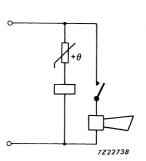


Fig.46 Alarm installation.

Note

The PTC reacts to ambient temperature (too low or too high)

PTC THERMISTORS

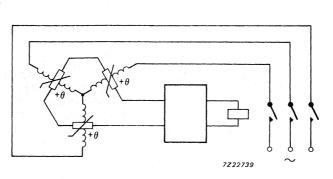
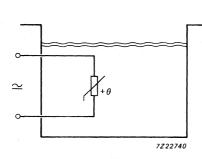



Fig.47 Temperature protection of electric motors.

Note

As soon as one or more of the windings becomes too hot, the motor is switched off.

Fig.48 Thermostatically controlled heating circuit.

Note

The PTC thermistor acts as a control element and heater at the same time.

PTC HEATING ELEMENTS

Our programme of PTC heating ceramics is currently being updated and a new range of ceramics for heating will be available during 1990.

The range will be divided into two operating voltages:

- 265 V high voltage range
- 30 V low voltage range

The range will be available in a selection of switching temperatures in either rectangular or circular outlines. Figures 1 to 4 and Tables 1 to 3 show the outlines available and their dimensions.

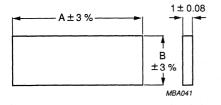


Fig.1 Rectangular outline, 30 V ceramic; see Table 1 for dimensions.

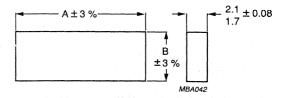


Fig.2 Rectangular outline, 265 V ceramic; see Table 1 for dimensions.

Table 1	Dimensio	ns of	rectangul	ar ceramics
	D 1111011010		cotangai	ar coraminos

A	B
(mm)	(mm)
37	6
33	9
33	7
19	14
19	9
14	7
9	7

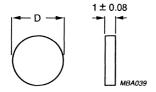
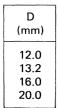



Fig.3 Circular outline, 30 V ceramic; see Table 2 for dimension D.

Fig.4 Circular outline, 265 V ceramic; see Table 3 for dimension D.

Table 2 Diameters available for 30 V circular ceramics

Table 3 Diameters available for 265 V circular ceramics

D (mm)	
6.5 8.0 10.0 12.0	

Table 4 shows an overview of the range which will be available.

Table 4 Range availability

	Outline availability for 30 V operation		1	ilability for peration
Parameter	Rectangular	Circular	Rectangular	Circular
Switching temperature (T _s) (°C)				
60	Yes	No	Yes	No
80	Yes	Yes	Yes	No
100	Yes	No	Yes	No
120	Yes	Yes	Yes	No
140	No	No	No	Yes
160	Yes	No	Yes	Yes
200	Yes	Yes	Yes	Yes
220	Yes	No	Yes	No
240	Yes	No	Yes	No
Resistance range at 25 °C (R ₂₅)	2.5 to 17 Ω	1.5 to 4 Ω	250 Ω to 2.5 kΩ	800 Ω to 3.5 kΩ
Operating temperature range	-40 to + 85 °C		−20 to + 70 °C	

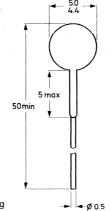
PTC THERMISTOR

disc

QUICK REFERENCE DATA

 $250 \Omega \pm 25\%$ Resistance value at +25 °C Resistance value at +80 °C $3700 \Omega \pm 30\%$ +6 °C approximately Switch temperature +5%/K approximately Temperature coefficient Max. voltage at Tamb = +55 °C 25 V d.c. 6 mW/K approximately Dissipation factor Operating temperature range -25 to +155 °C at zero power 0 to +55 °C at V_{max}

APPLICATION


Temperature compensating and temperature measurement purposes.

DESCRIPTION

The thermistor has a positive temperature coefficient. It consists of a disc with two tinned copper wires. The thermistor body is lacquered but not insulated.

MECHANICAL DATA

Outlines

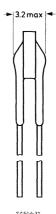


Fig. 1.

Mass

0.3 g approximately

Mounting

In any position by soldering

Robustness of terminations

Tensile strength

10 N

Bending

5 N

Soldering

Solderability

max. 240 °C, max. 4 s

Resistance to heat max. 265 °C, max. 11 s

Resistance *
at +25 °C
at +80 °C

Switch temperature

Temperature coefficient

Dissipation factor **

Heat capacity **

Thermal time constant **

Operating temperature range
at zero power
at V_{max}

Maximum voltage (DC)

 $250~\Omega \pm 25\%$ $3700~\Omega \pm 30\%$ $+6~^{\circ}\text{C}$ approximately +5%/K approximately 6~mW/K approximately 0,1~J/K approximately 17~s approximately

-25 to +155 °C 0 to +55 °C 25 V

PACKAGING

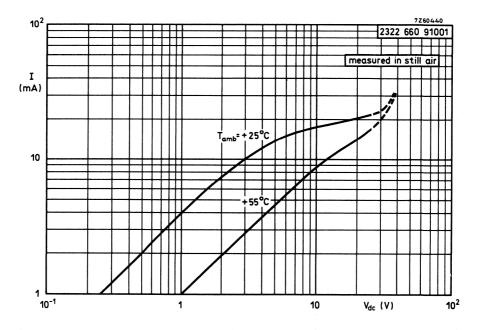


Fig. 2 Typical current/voltage characteristics.

- * Measuring voltage not exceeding 1,5 V (DC) to avoid internal heating.
- ** Measurement made with specimen in phosphor bronze clips in still air.

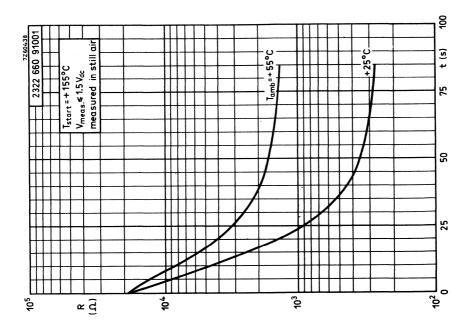


Fig. 4 Typical resistance/time (cooling) characteristics.

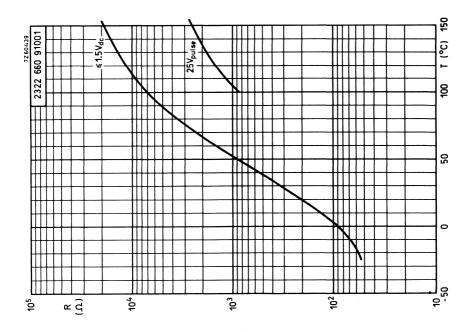


Fig. 3 Typical resistance/temperature characteristics.

PTC THERMISTORS

disc

QUICK REFERENCE DATA

Resistance values at +25 °C	50 and 60 Ω ± 30%
Resistance at other temperatures	see table
Switch temperature	300 tubic
Temperature coefficient	
Max. voltage (DC)	25 V
Dissipation factor	7 mW/K approximately
Operating temperature range at zero power	-25 to +125 °C *
at V _{max}	0 to +55 °C

MECHANICAL DATA

Outlines

catalogue number	colour band
2322 660 91006	red
2322 660 91007	orange
2322 660 91008	yellow
2322 660 91009	green

APPLICATION

General purpose.

6 max 5max 44 min 00.5

Fig. 1.

DESCRIPTION

The thermistors have a positive temperature coefficient. They consist of a disc with two tinned copper wires. The thermistor body is lacquered but not insulated.

Marking

The thermistors are marked with a colour band at the top of the body according to Fig. 1.

Mass

0,4 g approximately

Mounting

In any position by soldering

PACKAGING

^{*} Type 2322 660 91009: -25 to +150 °C.

	catalogue number 2322 660 followed by				
	91006	91007	91008	91009	
Resistance * at 25 °C	60	50	50	50	Ω
at 125 °C	3 to 15	100 to 500	50 to 500		kΩ
at 150 °C				0,1 to 1,2	MΩ
Switch temperature	30	50	80	105	oC
R _{max} at T _s	100	300	400	400	Ω
Temperature coefficient	7	16	23	40	%/K
Heat capacity **	0,13	0,13	0,13		J/K
Thermal time constant **	20	18	18		s

Tolerance on R₂₅
Max. voltage (DC)
Dissipation factor

± 30% 25 V

Operating temperature range

7 mW/K approximately

at zero power at V_{max} -25 to +125 °C ▲ 0 to +55 °C

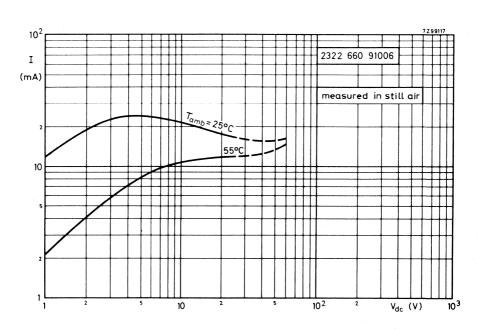


Fig. 2 Typical voltage/current characteristics.

- * Measuring voltage not exceeding 1,5 V (DC) to avoid internal heating.
- ** Measurements made with specimen in phosphor bronze clips, in still air.
- → A Type 2322 660 91009: -25 to + 150 °C.

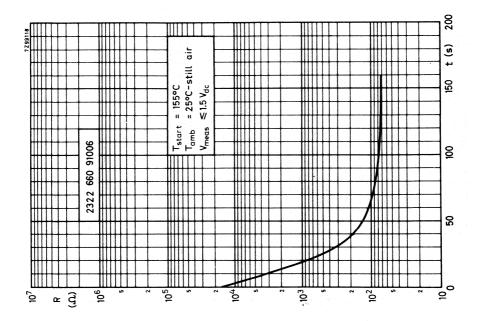


Fig. 4 Typical resistance/time (cooling) characteristic.

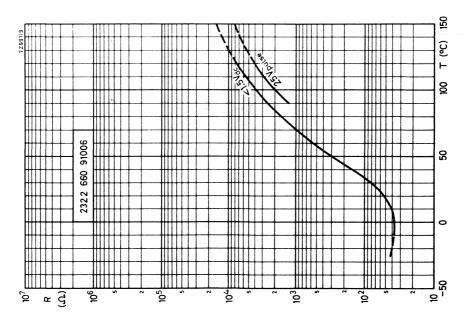


Fig. 3 Typical resistance/temperature characteristics.

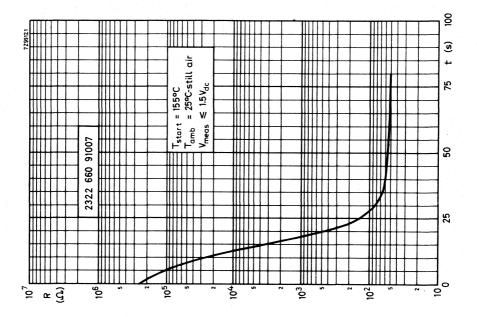


Fig. 6 Typical resistance/time (cooling) characteristic.

| Fig. 5 Typical resistance/temperature characteristics.

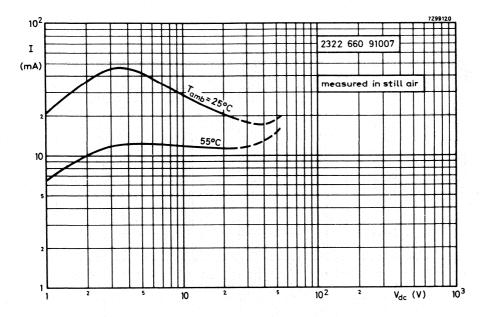


Fig. 7 Typical voltage/current characteristics.

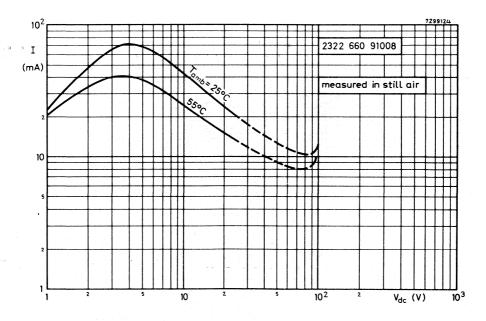


Fig. 8 Typical voltage/current characteristics.

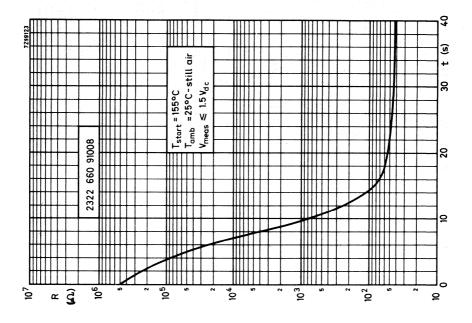


Fig. 10 Typical resistance/time (cooling) characteristic.

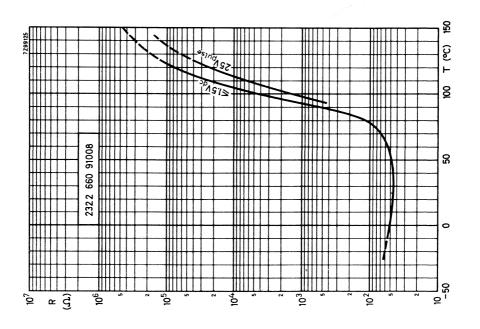


Fig. 9 Typical resistance/temperature characteristics.

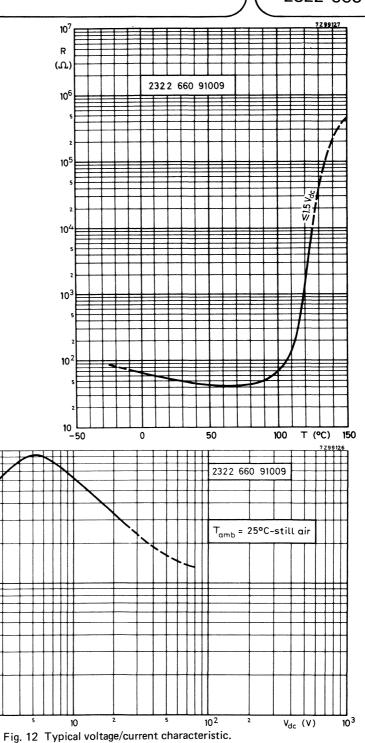


Fig. 11 Typical resistance/temperature characteristic.

10²

I (mA)

10

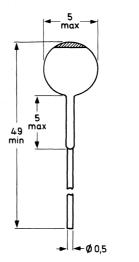
PTC THERMISTOR

disc

QUICK REFERENCE DATA

Resistance value at +25 °C	750 to 1500 Ω
Resistance value at +175 °C V _{pulse} = 345 V	70 000 Ω
Switch temperature	+115 °C
Temperature coefficient	+26%/K
Maximum voltage (RMS)	245 V
Dissipation factor	7 mW/K
Operating temperature range at zero power at maximum voltage	-25 to +155 °C 0 to +55 °C

APPLICATION


General purpose.

DESCRIPTION

The thermistor has a positive temperature coefficient. It consists of a disc with two tinned copper wires. The thermistor body is lacquered but not insulated.

MECHANICAL DATA

Outlines

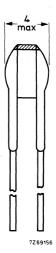


Fig. 1.

PACKAGING

2322 660 93001

Marking Brown band on top, see Fig. 1.

Mass 0,4 g approximately

Mounting In any position by soldering

Robustness of terminations

Tensile strength 5 N
Bending 2,5 N

Soldering

Solderability max. 240 °C, max. 4 s Resistance to heat max. 265 °C, max. 11 s

Impact 1000 mm free fall

Inflammability non-flammable

ELECTRICAL DATA

Unless otherwise specified measured according to IEC draft publication 40 (secretariat) 355.

All values without further indication are approximate values.

Resistance at +25 $^{\circ}$ C 750 to 1500 Ω Resistance at +115 $^{\circ}$ C max. 4000 Ω

Resistance at +175 °C

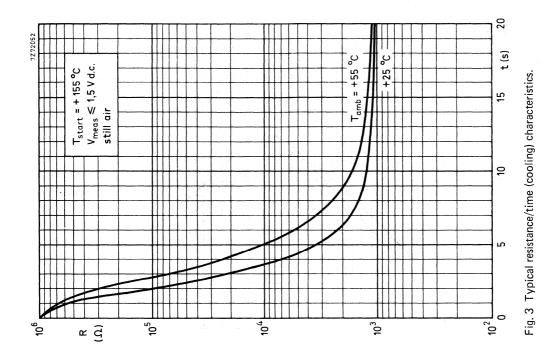
and $V_{\text{pulse}} = 345 \text{ V}$ min. 70 000 Ω

Switch temperature +115 °C

Temperature coefficient +28%/K

Dissipation factor 7 mW/K

Heat capacity 0,125 J/K


Thermal time constant 17.5 s

Operating temperature range

at zero power -25 to +155 °C

at maximum voltage 0 to + 55 °C

Maximum voltage (RMS) 245 V

(0°) T pulse | d.c 1,5 V 200 V/ 150 8 20 104 10² ₈0 107 901 105 103 я <u>д</u>

Fig. 2 Typical resistance/temperature characteristics.

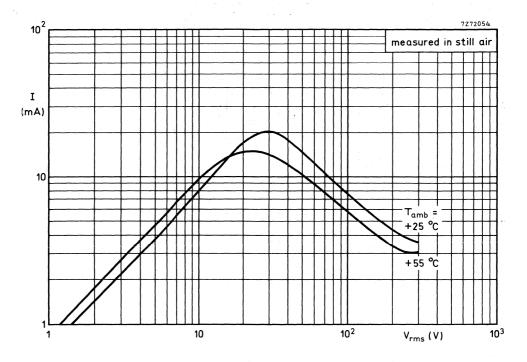


Fig. 4 Typical voltage/current characteristics.

PTC THERMISTORS

disc

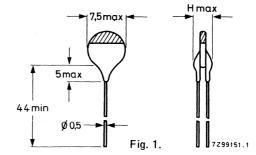
QUICK REFERENCE DATA

30 to 50 Ω
See Table 2
-25 to + 125 °C
0 to + 55 °C

APPLICATION

General purpose.

DESCRIPTION


The thermistors have a positive temperature coefficient. They consist of a disc with two tinned copper wires. The thermistor body is lacquered but not insulated.

MECHANICAL DATA

Outlines

Table 1 catalogue number colour band

yellow 2322 661 91002 6 2322 661 91003 6 green 2322 661 91004 6 orange 2322 661 91005 5 red

Marking

The thermistors are marked with a colour band at the top of the body according to Fig. 1.

H_{max}

Mass

1 g approximately

Mounting

In any position by soldering

Robustness of terminations

Tensile strength 10 N Bending 5 N

Soldering

max. 240 °C, 4 s Solderability Resistance to heat max. 265 °C, 11 s

PACKAGING

Table 2, typical values except R and $V_{\mbox{max}}$

	catalogue number 2322 661 followed by					
	91002	91003	91004	91005		
Resistance						
at 25 °C *	50	40	30	50	Ω	
at 40 °C			< 90		Ω	
at 60 °C	< 100				Ω	
at 95 °C		< 80			Ω	
at 100 °C	> 1		> 10	3 to 20	kΩ	
at 130 °C		> 10			kΩ	
Dissipation factor A	8,5	8,5	8,5	6	mW/K	
Maximum voltage (DC)	50	50	50	40	V , , , , , , , , , , , ,	
Switch temperature	80	110	45	25	°C	
Temperature coefficient	18	75	16	9	%/K	
Heat capacity ▲	0,425	0,425	0,425	0,240	J/K	
Thermal time constant ▲	50	50	50	40	S	

Tolerance on R₂₅

 \pm 15 Ω

Operating temperature range

at zero power at V_{max} -25 to + 125 °C 0 to +55 °C

* Measuring voltage not exceeding 1,5 V (DC) to avoid internal heating.

** Measured without internal heating.

▲ Measured with phosphor-bronze clips, in still air.

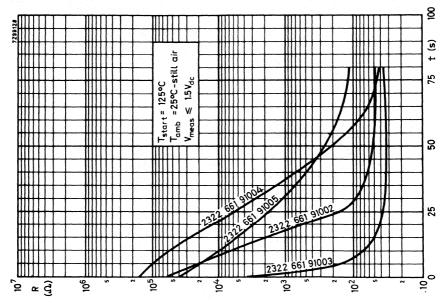


Fig. 3 Typical resistance/time (cooling) characteristics.

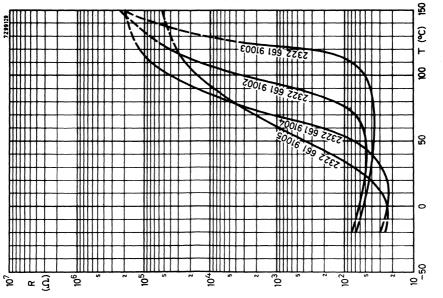


Fig. 2 Typical resistance/temperature characteristics.

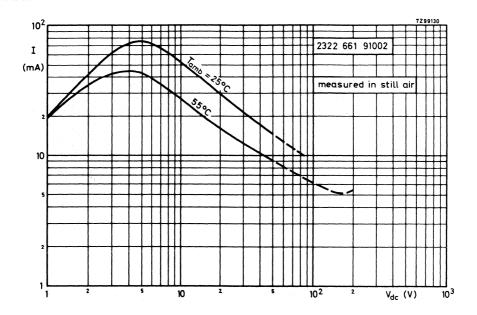


Fig. 4 Voltage/current characteristics.

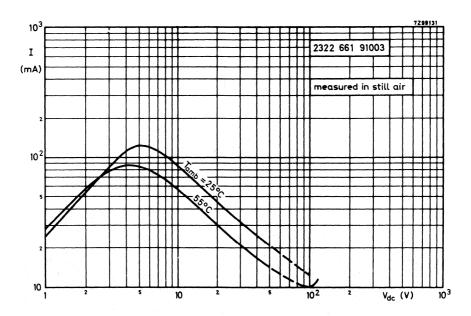


Fig. 5 Voltage/current characteristics.

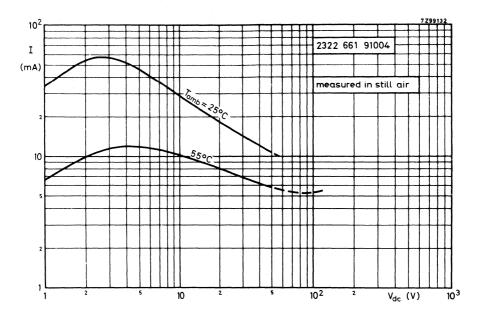


Fig. 6 Voltage/current characteristics.

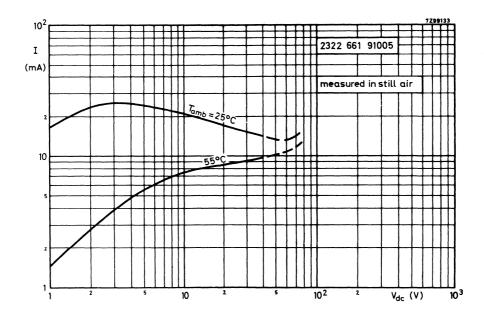


Fig. 7 Voltage/current characteristics.

PTC THERMISTOR

disc

QUICK REFERENCE DATA

Resistance value at +25 °C	36 to 50 Ω
Resistance value at +165 °C V _{pulse} = 180 V	$>$ 20 k Ω
Switch temperature	+115 °C approximately
Temperature coefficient	35%/K approximately
Maximum voltage (DC)	180 V
Dissipation factor	13 mW/K approximately
Operating temperature range at zero power at maximum voltage (DC)	0 to +155 ^o C 0 to +55 ^o C

APPLICATION

Protection of telegraphy relay contacts.

DESCRIPTION

The thermistor has a positive temperature coefficient. It consists of a disc with two tinned brass wires. The thermistor body is lacquered but not insulated.

MECHANICAL DATA

Outlines

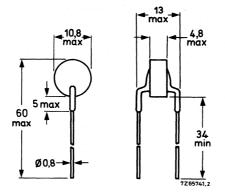


Fig. 1 Component outline.

Mass 2.27 g approximately

Mounting In any position by soldering

PACKAGING

Resistance 36 to 50 Ω at +25 °C* < 120 Ω at +115 °C* at +165 °C, V_{pulse} = 180 V** > 20 k Ω Current at +25 °C, V_{dc} = 180 V continuously ▲ < 10 mA+115 °C approximately Switch temperature 35%/K approximately Temperature coefficient 13 mW/K approximately Dissipation factor 1 J/K Heat capacity A 80 s approximately Thermal time constant A Operating temperature range at zero power 0 to +155 °C 0 to +55 °C at V_{max} Maximum voltage (DC) at +55 °C 180 V

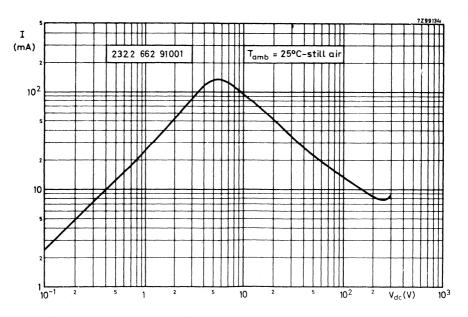


Fig. 2 Typical voltage/current characteristic.

- * Measuring voltage not exceeding 1,5 V (DC) to avoid internal heating.
- ** Measurement made without internal heating occurring.
- Measurement made with specimen in phosphor bronze clips, in still air.

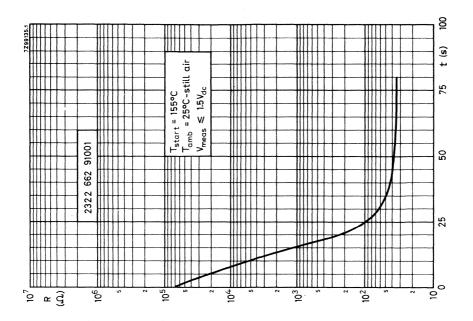


Fig. 4 Typical resistance/time (cooling) characteristic.

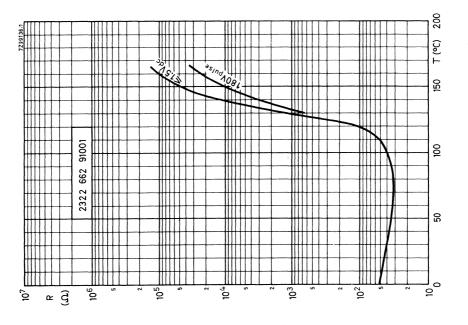


Fig. 3 Typical resistance/temperature characteristics.

PTC THERMISTOR

QUICK REFERENCE DATA

Resistance value at +25 °C	70 to 100 Ω
Max. current at 600 V RMS and +25 °C	5 mA
Switch temperature	+120 °C
Temperature coefficient	+35%/K
Maximum RMS voltage	460 V
Dissipation factor	11,5 mW/K
Operating temperature range at zero power at maximum voltage	-25 to +175 °C 0 to +85 °C

APPLICATION

Suitable in all kinds of applications, e.g. fluorescent lamp starter.

DESCRIPTION

This thermistor has a positive temperature coefficient. It is a leadless disc which is neither lacquered nor insulated.

MECHANICAL DATA

Outlines

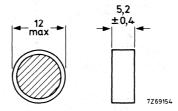
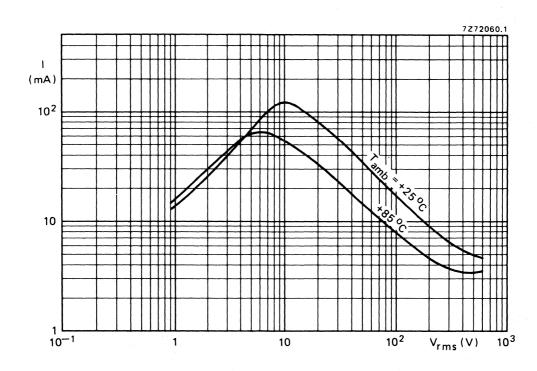


Fig. 1. Component outline.


Marking		None
Mass		2,7 g approximately
Mounting		In any position by clamping
Impact		200 mm free fall
Inflammability		The thermistors are rion-flammable

PACKAGING

Plastic blister pack containing 320 items.

with series resistor of 300 Ω

All values without further indication are approximate values. Resistance at +25 °C 70 to 100 Ω Resistance at +100 °C max. 200 Ω Max. current at 600 V RMS and +25 °C 5 mA (measurement made without internal heating) +120 °C Switch temperature +35%/K Temperature coefficient Dissipation factor 11,5 mW/K 1,3 J/K Heat capacity 115 s Thermal time constant Operating temperature range -25 to +175 °C at zero power 0 to +85 °C at maximum voltage Maximum RMS voltage

460 V

Fig. 2 Typical voltage/current characteristics.

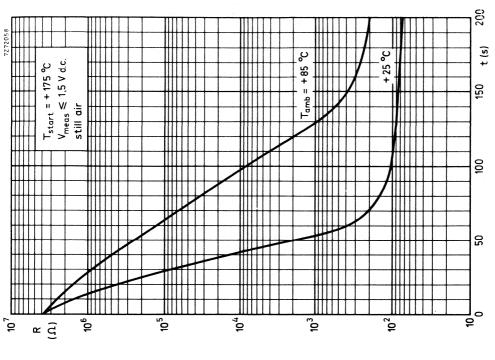


Fig. 3 Typical resistance/time (cooling) characteristics.

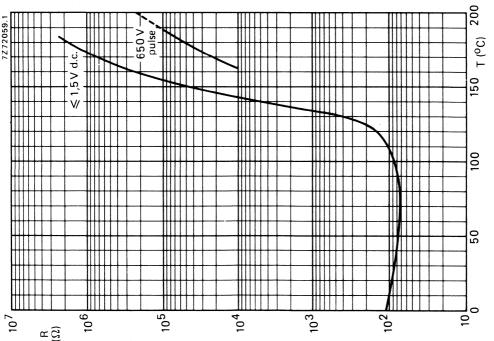


Fig. 2 Typical resistance/temperature characteristics.

PTC THERMISTOR

disc

QUICK REFERENCE DATA

Resistance value

at +25 °C

at +150 °C

 $V_{\text{pulse}} = 340 \text{ V}$

Switch temperature

Temperature coefficient

Max. RMS voltage at T_{amb} ≤ 60 °C

Dissipation factor

Operating temperature range

at zero power

at V_{max}

45 to 60 Ω

> 45 k Ω

-- 00

+75 °C approximately

+20%/K approximately

265 V

20 mW/K approximately

–25 to +155 °C

0 to +60 °C

APPLICATION

General purpose.

DESCRIPTION

This thermistor has a positive temperature coefficient. It is a disc with two tinned copper wires. The thermistor body is lacquered, but not insulated.

MECHANICAL DATA

Outlines

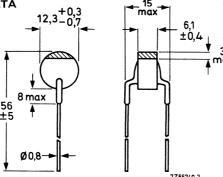


Fig. 1.

Marking

Green colour band on top of the body.

Mass

4,2 g approximately.

Mounting

In any position by soldering. Soldering should be done at least 15 mm from the

thermistor body.

PACKAGING

100 thermistors in a cardboard box.

Resistance at +25 °C * 45 to 60 Ω at +75 °C * < 160 Ω at +150 °C, V_{pulse} = 340 V ** > 45 k Ω Switch temperature +75 °C approximately +20%/K approximately Temperature coefficient Dissipation factor A 20 mW/K approximately Heat capacity A 2,2 J/K approximately Thermal time constant A 110 s approximately Operating temperature range -25 to +155 °C at zero power at V_{max} 0 to +60 °C 265 V Maximum RMS voltage, with series resistor of 33 Ω

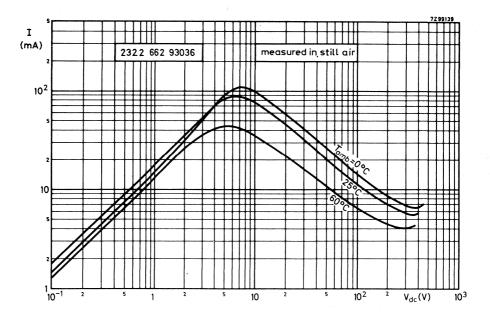


Fig. 2 Typical voltage/current characteristics.

- * Measuring voltage not exceeding 1,5 V (DC) to avoid internal heating.
- ** Measurement made without internal heating.
- ▲ Measurement made with specimen in phosphor bronze clips, in still air.

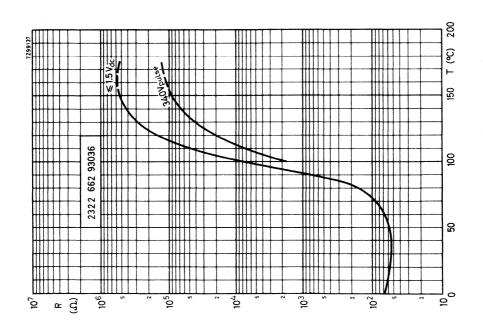


Fig. 4 Typical resistance/temperature characteristics (no internal heating).

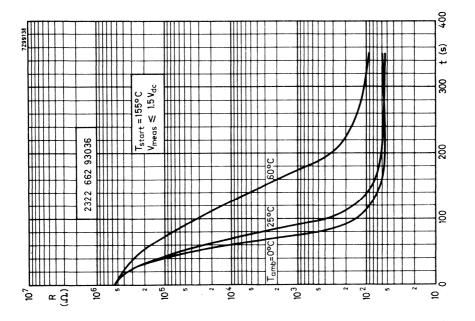


Fig. 3 Typical resistance/time (cooling) characteristics.

PTC THERMISTOR

disc

QUICK REFERENCE DATA

Resistance

at +25 °C $100 \Omega \pm 20\%$

at +155 °C

 V_{pulse} = 380 V \geqslant 40 k Ω

Switch temperature 75 °C

Temperature coefficient + 35%/K

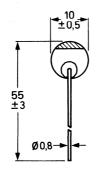
Maximum rms voltage 265 V

Dissipation factor 15 mW/K approximately

Operating temperature range

at zero power $-25 \text{ to } +155 \text{ }^{\circ}\text{C}$ at V_{max} 0 to $+60 \text{ }^{\circ}\text{C}$

APPLICATION


General purpose.

DESCRIPTION

This thermistor has a positive temperature coefficient. It consists of a disc with two tinned brass wires. The thermistor body is not lacquered.

MECHANICAL DATA

Outlines

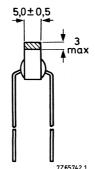


Fig. 1.

Marking

The thermistor is marked with a red colour band on top of the body.

Mass

2,7 g approx.

Mounting

In any position by soldering at min 15 mm from the body.

2322 662 93066

Robustness of terminations

Tensile strength 20 N Bending 10 N

Soldering

Solderability max. 240 °C, max. 4 s

Resistance to heat max. 265 °C, max. 11 s

PACKAGING

100 thermistors in a cardboard box.

ELECTRICAL DATA

All values without further indication are approximate values.

Resistance value

at +25 °C * 100 Ω ± 20% at +72 °C * $< 2 \times R_{25}$ at +85 °C * $> 2 \times R_{25}$ at +155 $^{\rm o}$ C and $V_{
m pulse}$ = 380 V ** \geq 40 k Ω +75 °C Switch temperature Temperature coefficient +35%/K Maximum rms voltage, with series resistor of 33 Ω 265 V Dissipation factor A 15,3 mW/K

Thermal time constant ▲ 80 s

Heat capacity of complete thermistor ▲ 1,2 J/K

Operating temperature range

at zero power -25 to +155 °C at maximum voltage 0 to +60 °C

- * Measuring voltage not exceeding 1,5 V DC to avoid internal heating.
- ** Measurement made without internal heating.
- ▲ Measurement made with specimen in phosphor bronze clips, in still air.

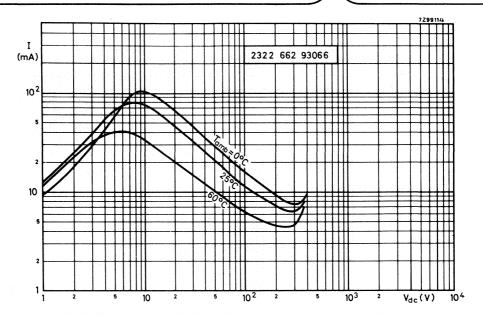


Fig. 3 Typical voltage/current characteristics.

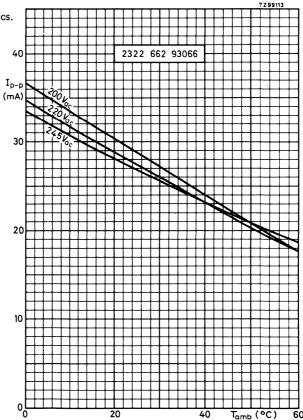


Fig. 4 Typical characteristics of peak to peak current against the ambient temperature at different voltages.

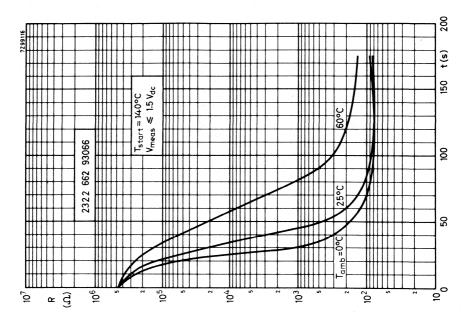


Fig. 6 Typical resistance/time (cooling) characteristics.

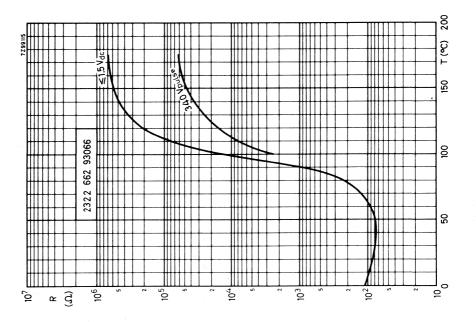


Fig. 5 Typical resistance/temperature characteristics.

PTC THERMISTORS FOR DEGAUSSING

The survey shown in Table 1 details the range of PTC thermistors available for degaussing purposes.

Table 1 Survey of types

catalogue number	type	V _{max} (RMS)	minimum inrush current	maximum residual current	R ₂₅ value	coil impedance
		V. Project	Ар-р	mA p-p	Ω	Ω
2322 662 93702	mono	290	25	45	18	8
2322 662 96176	mono	290	25	45	18	8
2322 662 96009	dual	265	10	4	36	17-25
2322 662 96011	dual	145/265	7.2/13	4	30	17
2322 662 96012	dual	265	11.6	11.6	36	15.5
2322 662 96013	dual	145	20	10	8	6.2
2322 662 96016	dual	265	12	6	25	25
2322 662 96022	dual	265	10	1	38	17-25
2322 662 96024	dual	265	10	4	36	17-25
2322 662 96025	dual	270	10	4	36	25
2322 662 96111	dual	265	13	4	30	17
2322 662 96116	dual	265	12	6	24	25
2322 662 96118	dual	265	10	2	36	17-25
2322 662 96122	dual	145/270	6.6/14.4	10	25	12
2322 662 96123	dual	245	16.2	6	18	14
2322 662 96124	dual	270	20	15	20	10
2322 662 96125	dual	140	16	7	8	9
2322 662 96126	dual	270	20	30	18	13

GENERAL MECHANICAL DATA

Unless otherwise stated, the following information is applicable to the complete range of mono and dual thermistors for degaussing. Please consult the applicable data sheet if this information does not apply.

Marking

The thermistors (with the exception of 2322 662 93702) are marked with the following information:

- the last five numbers of the catalogue number
- manufacturer's code of identification
- date of manufacture (4 figures denoting year and week number)

PTC THERMISTORS FOR DEGAUSSING

GENERAL MECHANICAL DATA (continued)

Soldering

Solderability

240 °C max., duration 4 s max.

Resistance to heat

265 °C max., duration 11 s max.

Impact

Free fall

1 m

Inflammability

The thermistors are non-flammable

PACKING

The thermistors (with the exception of 2322 662 93702) are supplied in cardboard boxes, each box containing 600 items.

MONO THERMISTOR

for degaussing

QUICK REFERENCE DATA

Minimum peak to peak inrush current at 220 V RMS	25 A
Maximum peak to peak current at 220 V RMS after 3 s after 1 min	250 mA 45 mA
Maximum RMS voltage	290 V
Operating temperature range at zero power at maximum voltage	–25 to 125 °C 0 to 55 °C

APPLICATION

These directly heated positive temperature coefficient thermistors are mainly used in degaussing circuits of colour television receivers and colour monitors.

MECHANICAL DATA

Dimensions in mm

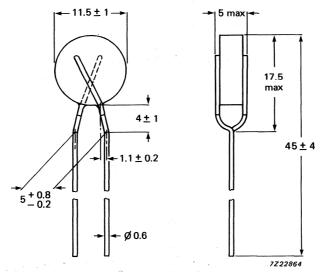


Fig.1 Component outline.

Marking

The thermistors have a grey lacquered coating on the body.

PACKING

The thermistors are supplied in cardboard boxes, each box containing 250 items.

Climatic category 25/125/56 Minimum peak to peak inrush current at 220 V RMS 25 A

Maximum peak to peak current at 220 V RMS

after 3 s 250 mA after 1 min 45 mA

Maximum RMS voltage 290 V

Resistance of the PTC at 25 °C $18 \Omega \pm 30\%$

Coil impedance Ω 8

Switching temperature of the PTC 50 °C approx.

Operating temperature range at zero power -25 to 125 °C at maximum power

0 to 55 °C

for degaussing

QUICK REFERENCE DATA

Minimum peak to peak inrush current at 200 V RMS	10 A
Maximum peak to peak current at 200 V RMS after 5 s after 30 s after 3 min	140 mA 10 mA 4 mA
Maximum RMS voltage	265 V
Operating temperature range at zero power at maximum voltage	–25 to 125 °C 0 to 60 °C

APPLICATION

These directly heated positive temperature coefficient thermistors are mainly used in degaussing circuits of colour television receivers and colour monitors.

DESCRIPTION

The thermistor consists of two discs encapsulated within a plastic housing. The pins are suitable for soldering directly onto a printed wiring board.

MECHANICAL DATA

Dimensions in mm

Mounting grid viewed from solder side of printed wiring board.

Pins A and B to be connected to the mains Pins A and C to be connected to the coil

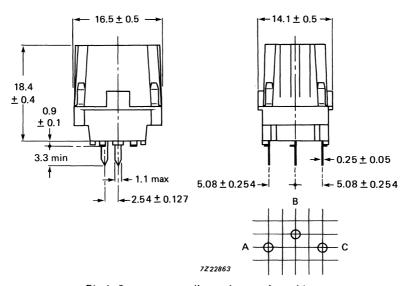
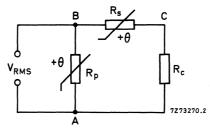



Fig.1 Component outline and mounting grid.

Climatic category	25/125/56
Minimum peak to peak inrush current at 200 V RMS (measured using the circuit shown in Fig.2)	10 A
Maximum peak to peak current at 200 V RMS (measured using the circuit shown in Fig.2)	
after 5 s	140 mA
after 30 s	10 mA
after 3 min	4 mA
Maximum RMS voltage in measuring circuit (Fig.2)	265 V RMS
Resistance of the series PTC (R _s) at 25 °C	36 Ω ± 25%
Resistance of the parallel PTC (R _p) at 25 °C	2 k Ω approx.
Coil impedance	17 to 25 Ω
Operating temperature range	
at zero power	–25 to 125 °C
at maximum power	0 to 60 °C

 R_{S} = series PTC R_{D} = parallel PTC R_{C} replaces the degaussing coil (Z = 25 Ω)

Fig.2 Measuring circuit.

for degaussing

QUICK REFERENCE DATA

Minimum peak to peak inrush current at:	200 V RMS 13 A	120 V RMS 7.2 A
Maximum peak to peak current at: after 30 s after 3 min	200 V RMS 10 mA 4 mA	120 V RMS 10 mA 4 mA
Maximum RMS voltage	26	5 V
Operating temperature range at zero power at maximum voltage		25 to 125 °C to 60 °C

APPLICATION

These directly heated positive temperature coefficient thermistors are mainly used in degaussing circuits of colour television receivers and colour monitors.

DESCRIPTION

The thermistor consists of two discs encapsulated within a plastic housing. The pins are suitable for soldering directly onto a printed wiring board.

MECHANICAL DATA

Dimensions in mm

Mounting grid viewed from solder side of printed wiring board

Pins A and B to be connected to the mains Pins A and C to be connected to the coil

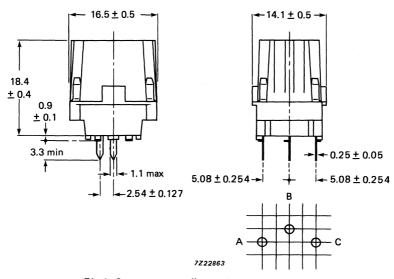



Fig.1 Component outline and mounting grid.

Climatic category	25	/125/56
Minimum peak to peak inrush current at: (measured using the circuit shown in Fig.2)	200 V RMS 13 A	120 V RMS 7.2 A
Maximum peak to peak current at: (measured using the circuit shown in Fig.2)	200 V RMS	120 V RMS
after 30 s	10 mA	10 mA
after 3 min	4 mA	4 mA
Maximum RMS voltage in measuring circuit	26	5 V
Resistance of the series PTC (R _s) at 25 °C	30	Ω ± 25%
Resistance of the parallel PTC (R _p) at 25 °C	· 1 J	Ω approx.
Coil impedance	17	Ω
Operating temperature range		
at zero power	· -2	5 to 125 °C
at maximum power	0 t	o 60 ^o C

 R_{S} = series PTC R_{D} = parallel PTC R_{C} replaces the degaussing coil (Z = 17 Ω)

Fig.2 Measuring circuit.

DUAL THERMISTOR for degaussing

QUICK REFERENCE DATA

Minimum peak to peak inrush current at 200 V RMS	11.6 A
Maximum peak to peak current at 200 V RMS after 5 s after 30 s after 4 min	140 mA 24 mA 11.6 mA
Maximum RMS voltage	265 V
Operating temperature range at zero power at maximum voltage	–25 to 125 °C 0 to 60 °C

APPLICATION

These directly heated positive and negative temperature coefficient thermistors are mainly used in degaussing circuits of colour television receivers and colour monitors.

DESCRIPTION

The thermistor consists of two discs encapsulated within a plastic housing. The pins are suitable for soldering directly onto a printed wiring board.

MECHANICAL DATA

Dimensions in mm

Mounting grid viewed from solder side of printed wiring board

Pin A to be connected to the load

Pin B to be connected to the mains

Pin C to be connected to the coil

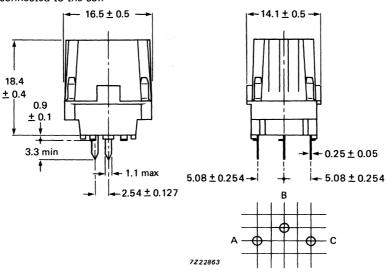
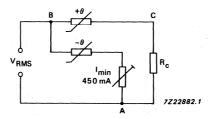



Fig.1 Component outline and mounting grid.

Climatic category		25/125/56
Minimum peak to peak inrush of (measured using the circuit s		11.6 A
Maximum peak to peak current (measured using the circuit s		
after 5 s after 30 s after 4 min		140 mA 24 mA 11.6 mA
Resistance of the PTC at 25 °C		$36 \Omega \pm 25\%$
Resistance of the NTC at 25 °C		130 Ω ± 20%
Coil impedance		15.5 Ω min.
Switching temperature of the P	РТС	65 °C
Permissible supply voltage rang	je	187 to 265 V RMS
Maximum current through the	NTC at	
187 V RMS	•	1.4 A
265 V RMS		1 A
Minimum current through the I current at 200 V RMS	NTC to ensure peak	450 mA RMS
Operating temperature range		
at zero power		–25 to 125 °C
at maximum power		0 to 60 °C

 T_{amb} = 25 °C AB = NTC BC = PTC R_C replaces the degaussing coil (Z = 18.9 Ω)

Fig.2 Measuring circuit.

DUAL THERMISTOR for degaussing

QUICK REFERENCE DATA

Minimum peak to peak inrush current at 100 V RMS,	6	20 A
Maximum peak to peak current at 100 V RMS after 5 s after 30 s after 3 min		280 mA 20 mA 10 mA
Maximum RMS voltage		145 V
Operating temperature range at zero power at maximum voltage		–25 to 125 °C 0 to 60 °C

APPLICATION

These directly heated positive temperature coefficient thermistors are mainly used in degaussing circuits of colour television receivers and colour monitors.

DESCRIPTION

The thermistor consists of two discs encapsulated within a plastic housing. The pins are suitable for soldering directly onto a printed wiring board.

MECHANICAL DATA

Dimensions in mm

Mounting grid viewed from solder side of printed wiring board

Pins A and B to be connected to the mains

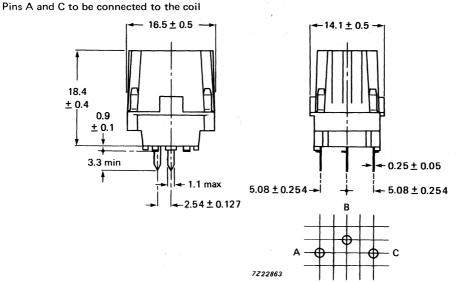
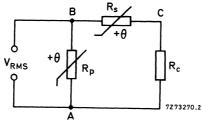



Fig.1 Component outline and mounting grid.

Climatic category		25/125/56
the state of the s	eak inrush current at 100 V RMS he circuit shown in Fig.2)	20 A
· · · · · · · · · · · · · · · · · · ·	eak current at 100 V RMS he circuit shown in Fig.2)	
after 5 s		280 mA
after 30 s		20 mA
after 3 min		10 mA
Maximum RMS volta	age in measuring circuit (Fig.2)	145 V
Resistance of the ser	ies PTC (R _s) at 25 °C	$8 \Omega \pm 25\%$
Resistance of the par	rallel PTC (R _p) at 25 ^o C	1 k Ω approx.
Coil impedance		6.2 Ω
Operating temperatu	re range	
at zero power		-25 to 125 °C
at maximum powe	er	0 to 60 °C

 $\rm R_{s}$ = series PTC $\rm R_{p}$ = parallel PTC $\rm R_{c}$ replaces the degaussing coil (Z = 6.2 $\Omega)$

Fig.2 Measuring circuit.

for degaussing

QUICK REFERENCE DATA

Minimum peak-to-peak inrush current at 200 V RMS	12 A
Maximum peak-to-peak current at 200 V RMS	
after 5 s	140 mA
after 30 s	12 mA
after 3 min	6 mA
Maximum RMS voltage	265 V
Operating temperature range	
at zero power	-25 to 125 °C
at maximum voltage	0 to 60 °C

APPLICATION

These directly heated positive temperature coefficient thermistors are mainly used in degaussing circuits of colour television receivers and colour monitors.

DESCRIPTION

The thermistor consists of two discs encapsulated within a plastic housing. The pins are suitable for soldering directly onto a printed wiring board.

MECHANICAL DATA

Dimensions in mm

Mounting grid viewed from solder side of printed wiring board.

Pins A and B to be connected to the mains.

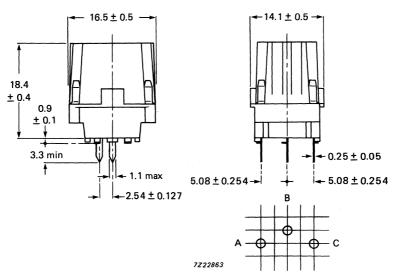
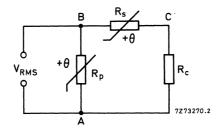



Fig.1 Component outline and mounting grid.

Climatic category	25/125/56
Minimum peak-to-peak inrush current at 200 V RMS (measured using the circuit shown in Fig.2)	12 A
Maximum peak-to-peak current at 200 V RMS (measured using the circuit shown in Fig.2)	
after 5 s	140 mA
after 30 s	12 mA
after 3 min	6 mA
Maximum RMS voltage in measuring circuit (Fig.2)	265 V
Resistance of the series PTC (R _s) at 25 °C	25 Ω ± 25%
Resistance of the parallel PTC (R _p) at 25 °C	750 Ω to 3 k Ω
Coil impedance	25 Ω
Operating temperature range	
at zero power	-25 to 125 °C
at maximum power	0 to 60 °C

 R_S = series PTC R_D = parallel PTC R_C replaces the degaussing coil (Z = 25 Ω)

Fig.2 Measuring circuit.

for degaussing

QUICK REFERENCE DATA

	10 A	Minimum peak-to-peak inrush current at 200 V RMS
		Maximum peak-to-peak current at 200 V RMS
A	140 mA	after 5 s
v	10 mA	after 30 s
	1 mA	after 3 min
	265 V	Maximum RMS voltage
		Operating temperature range
125 °C	-25 to 125	at zero power
o o C	0 to 60 °C	at maximum voltage
	U to 60	at maximum voltage

APPLICATION

These directly heated positive temperature coefficient thermistors are mainly used in degaussing circuits of colour television receivers and colour monitors.

DESCRIPTION

The thermistor consists of two discs encapsulated within a plastic housing. The pins are suitable for soldering directly onto a printed wiring board.

MECHANICAL DATA

Dimensions in mm

Mounting grid viewed from solder side of printed wiring board.

Pins A and B to be connected to the mains.

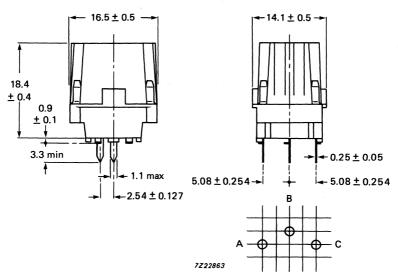
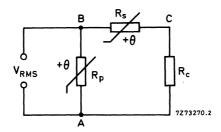



Fig.1 Component outline and mounting grid.

Climatic category		25/125/56
Minimum peak-to-peak inrush current at 200 V (measured using the circuit shown in Fig.2)	RMS	10 A
Maximum peak-to-peak current at 200 V RMS (measured using the circuit shown in Fig.2)		
after 5 s		140 mA
after 30 s		10 mA
after 3 min		1 mA
Maximum RMS voltage in measuring circuit (Fig	g.2)	265 V
Resistance of the series PTC (R _s) at 25 °C		$38 \Omega \pm 25\%$
Resistance of the parallel PTC (R _p) at 25 °C		2 k Ω approx.
Coil impedance		17 to 25 Ω
Operating temperature range		
at zero power		-25 to 125 °C
at maximum power		0 to 60 °C

 R_S = series PTC R_p = parallel PTC R_C replaces the degaussing coil (Z = 25 Ω)

Fig.2 Measuring circuit.

for degaussing

QUICK REFERENCE DATA

Minimum peak-to-peak inrush cu	rrent at 200 V RMS	10 A
Maximum peak-to-peak current a	it 200 V RMS	
after 5 s after 30 s after 3 min		140 mA 10 mA 4 mA
Maximum RMS voltage		265 V
Operating temperature range at zero power at maximum voltage		-25 to 125 °C 0 to 60 °C

APPLICATION

These directly heated positive temperature coefficient thermistors are mainly used in degaussing circuits of colour television receivers and colour monitors.

DESCRIPTION

The thermistor consists of two discs encapsulated within a plastic housing. The pins are suitable for soldering directly onto a printed wiring board.

MECHANICAL DATA

Dimensions in mm

Mounting grid viewed from solder side of printed wiring board.

Pins A and B to be connected to the mains.

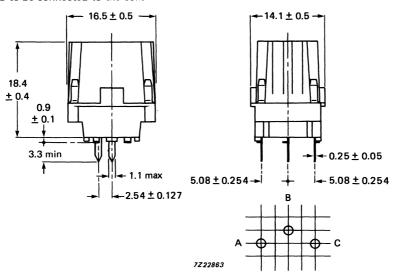
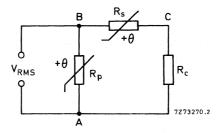



Fig.1 Component outline and mounting grid.

Climatic category	25/125/56
Minimum peak-to-peak inrush current at 200 V RMS (measured using the circuit shown in Fig.2)	10 A
Maximum peak-to-peak current at 200 V RMS (measured using the circuit shown in Fig.2)	140
after 5 s after 30 s after 3 min	140 mA 10 mA 4 mA
Maximum RMS voltage in measuring circuit (Fig.2)	265 V
Resistance of the series PTC (R _s) at 25 °C	36 Ω ± 25%
Resistance of the parallel PTC (Rp) at 25 °C	$2 \text{ k}\Omega$ approx.
Coil impedance	17 to 25 Ω
Operating temperature range at zero power at maximum power	–25 to 125 °C 0 to 60 °C

 $R_s = series PTC$ $R_p = parallel PTC$ $R_C = series PTC$

Fig.2 Measuring circuit.

for degaussing

QUICK REFERENCE DATA

Current measured through the coil at 220 V RMS	
Minimum peak-to-peak inrush current	10 A
Maximum peak-to-peak current after 3 s after 3 min	300 mA 4 mA
Maximum RMS voltage	270 V
Operating temperature range at zero power at maximum voltage	–25 to 125 °C 0 to 60 °C

APPLICATION

These directly heated positive temperature coefficient thermistors are mainly used in degaussing circuits of colour television receivers and colour monitors.

DESCRIPTION

The thermistor consists of two discs encapsulated within a plastic housing. The pins are suitable for soldering directly onto a printed wiring board.

MECHANICAL DATA

Dimensions in mm

Mounting grid viewed from solder side of printed wiring board.

Pins A and B to be connected to the mains.

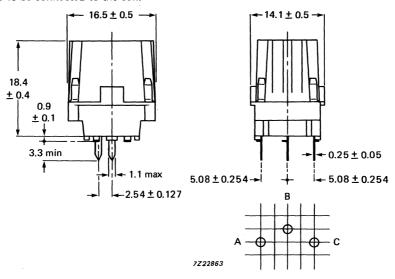
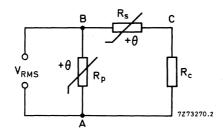



Fig.1 Component outline and mounting grid.

MECHANICAL DATA

Climatic category	25/125/56
Minimum peak-to-peak inrush current at 220 V RMS (measured using the circuit shown in Fig.2)	10 A
Maximum peak-to-peak current at 220 V RMS (measured using the circuit shown in Fig.2)	
after 3 s after 3 min	300 mA 4 mA
Maximum RMS voltage in measuring circuit (Fig.2)	270 V
Resistance of the series PTC (R _s) at 25 °C	36 Ω ± 25%
Resistance of the parallel PTC (Rp) at 25 °C	1 k Ω approx.
Coil impedance	25 Ω
Operating temperature range	
at zero power	−25 to 125 °C
at maximum power	0 to 60 °C

 R_S = series PTC R_D = parallel PTC R_C replaces the degaussing coil (Z = 25 Ω)

Fig.2 Measuring circuit.

for degaussing

QUICK REFERENCE DATA

Minimum peak-to-peak inrush current at	200 V RMS	120 V RMS
	13 A	7.2 A
Maximum peak-to-peak current at	200 V RMS	120 V RMS
after 30 s	10 mA	10 mA
after 3 min	4 mA	4 mA
Maximum RMS voltage	265	V
Operating temperature range		
at zero power	-25	to 125 °C
at maximum voltage	0 to	60 °C

APPLICATION

These directly heated positive temperature coefficient thermistors are mainly used in degaussing circuits of colour television receivers and colour monitors.

DESCRIPTION

The thermistor consists of two discs encapsulated within a plastic housing. The pins are suitable for soldering directly onto a printed wiring board.

MECHANICAL DATA

Dimensions in mm

Mounting grid viewed from solder side of printed wiring board.

Pins A and B to be connected to the mains.

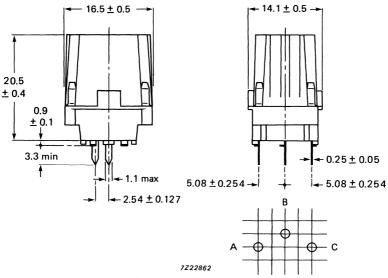
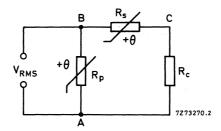



Fig.1 Component outline and mounting grid.

Climatic category		25/	125/56
Minimum peak-to-peak inrush o (measured using the circuit s		200 V RMS 13 A	120 V RMS 7.2 A
Maximum peak-to-peak current (measured using the circuit s		200 V RMS	120 V RMS
after 30 s		10 mA	10 mA
after 3 min		4 mA	4 mA
Maximum RMS voltage in meas	suring circuit (Fig.2)	26	5 V
Resistance of the series PTC (R	s) at 25 °C	30	Ω ± 25 °C
Resistance of the parallel PTC ((R _p) at 25 °C	1 k	Ω approx.
Coil impedance		17	Ω
Operating temperature range			
at zero power		-2	5 to 125 °C
at maximum power		0 t	o 60 °C

 R_{s} = series PTC R_{p} = parallel PTC R_{c} replaces the degaussing coil (Z = 17 Ω)

Fig.2 Measuring circuit.

for degaussing

QUICK REFERENCE DATA

Minimum peak-to-peak inrush current at 20	00 V RMS	12 A
Maximum peak-to-peak current at 200 V R	MS	
after 5 s		140 mA
after 30 s		12 mA
after 3 min		6 mA
Maximum RMS voltage		265 V
Operating temperature range		
at zero power		-25 to 125 °C
at maximum voltage		0 to 60 °C

APPLICATION

These directly heated positive temperature coefficient thermistors are mainly used in degaussing circuits of colour television receivers and colour monitors.

DESCRIPTION

The thermistor consists of two discs encapsulated within a plastic housing. The pins are suitable for soldering directly onto a printed wiring board.

MECHANICAL DATA

Dimensions in mm

Mounting grid viewed from solder side of printed wiring board.

Pins A and B to be connected to the mains.

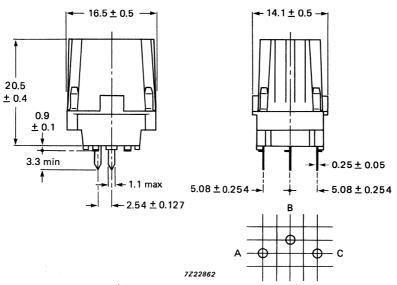
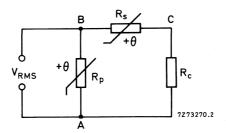



Fig.1 Component outline and mounting grid.

Climatic category	25/125/56
Minimum peak-to-peak inrush current at 200 V RMS (measured using the circuit shown in Fig.2)	12 A
Maximum peak-to-peak current at 200 V RMS (measured using the circuit shown in Fig.2)	
after 5 s	140 mA
after 30 s	12 mA
after 3 min	6 mA
Maximum RMS voltage in measuring circuit (Fig.2)	265 V
Resistance of the series PTC (R _S) at 25 °C	24 Ω ± 25%
Resistance of the parallel PTC (Rp) at 25 °C	750 Ω to 3 k Ω
Coil impedance	25 Ω
Operating temperature range	
at zero power	-25 to 125 °C
at maximum power	0 to 60 °C

 R_s = series PTC R_p = parallel PTC R_C replaces the degaussing coil (Z = 25 Ω)

Fig.2 Measuring circuit.

for degaussing

QUICK REFERENCE DATA

Minimum peak-to-peak inrush curren	t at 200 V RMS	10 A
Maximum peak-to-peak current at 20	00 V RMS	
after 5 s after 30 s after 3 min		140 mA 10 mA 2 mA
Maximum RMS voltage		265 V
Operating temperature range at zero power at maximum voltage		−25 to 125 °C 0 to 60 °C

APPLICATION

These directly heated positive temperature coefficient thermistors are mainly used in degaussing circuits of colour television receivers and colour monitors.

DESCRIPTION

The thermistor consists of two discs encapsulated within a plastic housing. The pins are suitable for soldering directly onto a printed wiring board.

MECHANICAL DATA

Dimensions in mm

 $\label{lem:mounting grid viewed from solder side of printed wiring board.$

Pins A and B to be connected to the mains.

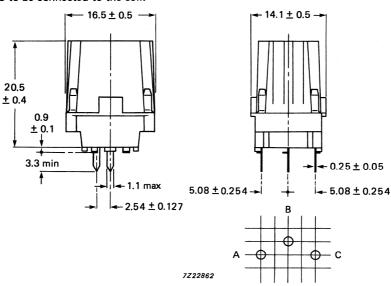
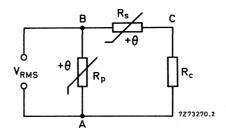



Fig.1 Component outline and mounting grid.

Climatic category		25/125/56
Minimum peak-to-peak inru (measured using the circ		10 A
Maximum peak-to-peak cur (measured using the circu after 5 s after 30 s after 3 min		140 mA 10 mA 2 mA
Maximum RMS voltage in r	measuring circuit (Fig.2)	265 V
Resistance of the series PTO	C (R _s) at 25 °C	$36 \Omega \pm 25\%$
Resistance of the parallel P	TC (R _p) at 25 °C	3 k Ω approx.
Coil impedance	·	17 to 25 Ω
Operating temperature rang at zero power at maximum power	ge	-25 to 125 °C 0 to 60 °C

 $R_{S} = series PTC$ $R_{D} = parallel PTC$ R_{C} replaces the degaussing coil (Z = 25 Ω)

Fig.2 Measuring circuit.

for degaussing

QUICK REFERENCE DATA

Minimum peak-to-peak inrush current at	240 V RMS 14.4 A	110 V RMS 6.6 A
Maximum peak-to-peak current at after 3 s after 1 min	240 V RMS 150 mA 10 mA	110 V RMS 150 mA 10 mA
Maximum RMS voltage	270 \	Zerosa ek Sv¹ j aros e
Operating temperature range at zero power at maximum voltage		to 125 °C to 85 °C

APPLICATION

These directly heated positive temperature coefficient thermistors are mainly used in degaussing circuits of colour television receivers and colour monitors.

DESCRIPTION

The thermistor consists of two discs encapsulated within a plastic housing. The pins are suitable for soldering directly onto a printed wiring board.

MECHANICAL DATA

Dimensions in mm

Mounting grid viewed from solder side of printed wiring board.

Pins A and B to be connected to the mains.

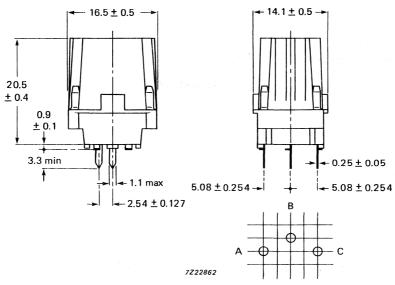
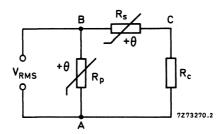



Fig.1 Component outline and mounting grid.

Climatic category 25/125/56 240 V RMS 110 V RMS Minimum peak-to-peak inrush current at 14.4 A 6.6 A (measured using the circuit shown in Fig.2) 240 V RMS 110 V RMS Maximum peak-to-peak current at (measured using the circuit shown in Fig.2) after 3 s 150 mA 150 mA after 1 min 10 mA 10 mA 270 V Maximum RMS voltage in measuring circuit (Fig.2) Resistance of the series PTC (R_s) at 25 °C $25 \Omega \pm 25\%$ 100 Ω min. Resistance of the parallel PTC (Rp) at 25 °C Coil impedance 12Ω Operating temperature range -25 to 125 °C at zero power at maximum power -10 to 85 °C

 R_s = series PTC R_p = parallel PTC R_C replaces the degaussing coil (Z = 12 Ω)

Fig.2 Measuring circuit.

for degaussing

QUICK REFERENCE DATA

Minimum peak-to-peak inrush current at 190 V RMS	16.2 A
Maximum peak-to-peak current at 190 V RMS after 30 s after 3 min	12 mA 6 mA
Maximum RMS voltage	245 V
Operating temperature range at zero power at maximum voltage	–25 to 125 °C 0 to 60 °C

APPLICATION

These directly heated positive and negative temperature coefficient thermistors are mainly used in degaussing circuits of colour television receivers and colour monitors.

DESCRIPTION

The thermistor consists of two discs encapsulated within a plastic housing. The pins are suitable for soldering directly onto a printed wiring board.

MECHANICAL DATA

Dimensions in mm

Mounting grid viewed from solder side of printed wiring board.

Pins A and B to be connected to the mains.

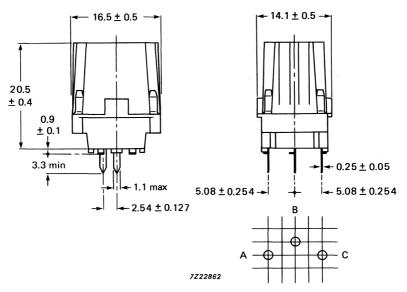
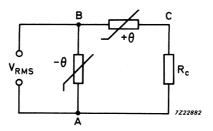



Fig.1 Component outline and mounting grid.

Climatic category	25/125/56
Minimum peak-to-peak inrush current at 190 V RMS (measured using the circuit shown in Fig.2)	16.2 A
Maximum peak-to-peak current at 190 V RMS (measured using the circuit shown in Fig.2) after 30 s after 3 min	12 mA 6 mA
Maximum RMS voltage in measuring circuit (Fig.2)	245 V
Resistance of the series PTC (R _s) at 25 °C	18 Ω ± 25%
Resistance of the parallel PTC (R _p) at 25 °C	2 k Ω approx.
Coil impedance	14 Ω
Operating temperature range	
at zero power	−25 to 125 °C
at maximum power	0 to 60 °C

 R_{S} = series PTC R_{D} = parallel PTC R_{C} replaces the degaussing coil (Z = 14 Ω)

Fig.2 Measuring circuit.

for degaussing

QUICK REFERENCE DATA

20 A
300 mA
15 mA
270 V
-25 to 125 °C
0 to 60 °C

APPLICATION

These directly heated positive temperature coefficient thermistors are mainly used in degaussing circuits of colour television receivers and colour monitors.

DESCRIPTION

The thermistor consists of two discs encapsulated within a plastic housing. The pins a a suitable for soldering directly onto a printed wiring board.

MECHANICAL DATA

Dimensions in mm

Mounting grid viewed from solder side of printed wiring board.

Pins A and B to be connected to the mains.

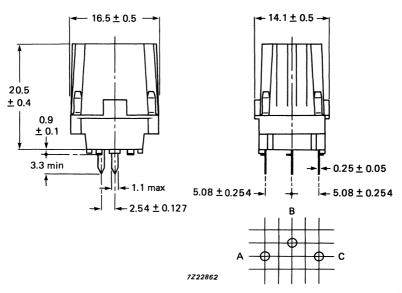
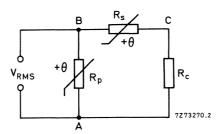



Fig.1 Component outline and mounting grid.

Climatic category		25/125/56
Minimum peak-to-peak inrus (measured using the circu		20 A
Maximum peak-to-peak curr (measured using the circui after 5 s after 3 min		300 mA 15 mA
Maximum RMS voltage in m	neasuring circuit (Fig.2)	270 V
Resistance of the series PTC	(R _s) at 25 °C	20 Ω ± 25%
Resistance of the parallel PT	C (R _p) at 25 °C	750 Ω to 3 k Ω
Coil impedance	•	10 Ω
Operating temperature range at zero power at maximum power	e	-25 to 125 °C 0 to 60 °C

 R_{S} = series PTC R_{D} = parallel PTC R_{C} replaces the degaussing coil (Z = 10 Ω)

Fig.2 Measuring circuit.

for degaussing

QUICK REFERENCE DATA

Minimum peak-to-peak inrush current at 120 VRMS	16 A
Maximum peak-to-peak current at 120 V RMS after 5 s after 3 min	300 mA 7 mA
Maximum RMS voltage	140 V
Operating temperature range at zero power at maximum voltage	-25 to 125 °C 0 to 60 °C

APPLICATION

These directly heated positive temperature coefficient thermistors are mainly used in degaussing circuits of colour television receivers and colour monitors.

DESCRIPTION

The thermistor consists of two discs encapsulated within a plastic housing. The pins are suitable for soldering directly onto a printed wiring board.

MECHANICAL DATA

Dimensions in mm

Mounting grid viewed from solder side of printed wiring board.

Pins A and B to be connected to the mains.

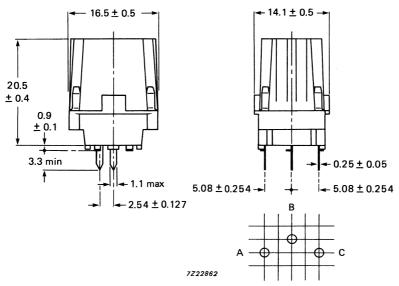
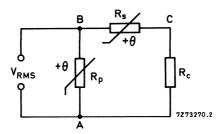



Fig.1 Component outline and mounting grid.

Climatic category	25/125/56
Minimum peak-to-peak inrush current at 120 V RMS (measured using the circuit shown in Fig.2)	16 A
Maximum peak-to-peak current at 120 V RMS (measured using the circuit shown in Fig.2) after 5 s after 3 min	300 mA 7 mA
Maximum RMS voltage in measuring circuit (Fig.2)	140 V
Resistance of the series PTC (R _s) at 25 °C	8 Ω ± 25%
Resistance of the parallel PTC (R _p) at 25 °C	750 Ω to 3 k Ω
Coil impedance	9 Ω
Operating temperature range	
at zero power at maximum power	-25 to 125 °C 0 to 60 °C

 R_{s} = series PTC R_{p} = parallel PTC R_{c} replaces the degaussing coil (Z = 9 Ω)

Fig.2 Measuring circuit.

for degaussing

QUICK REFERENCE DATA

Minimum peak-to-peak inrush current at 220 V RMS	20 A
Maximum peak-to-peak current at 220 V RMS	
after 5 s	150 mA
after 30 s	30 mA
Maximum RMS voltage	270 V
Operating temperature range	
at zero power	-25 to 125 °C
at maximum voltage	0 to 60 °C

APPLICATION

These directly heated positive temperature coefficient thermistors are mainly used in degaussing circuits of colour television receivers and colour monitors.

DESCRIPTION

The thermistor consists of two discs encapsulated within a plastic housing. The pins are suitable for soldering directly onto a printed wiring board.

MECHANICAL DATA

Dimensions in mm

Mounting grid viewed from solder side of printed wiring board.

Pins A and B to be connected to the mains.

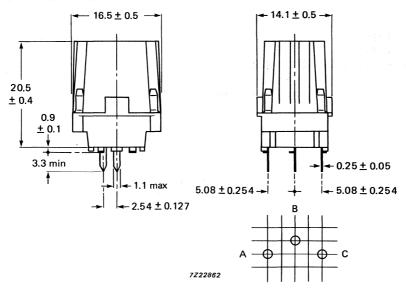
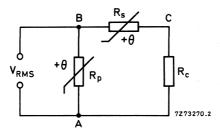



Fig.1 Component outline and mounting grid.

Climatic category	25/125/56
Minimum peak-to-peak inrush current at 220 V RMS (measured using the circuit shown in Fig.2)	20 A
Maximum peak-to-peak current at 220 V RMS (measured using the circuit shown in Fig.2) after 5 s	150 mA
after 30 s	30 mA
Maximum RMS voltage in measuring circuit (Fig.2)	270 V
Resistance of the series PTC (R _s) at 25 °C	18 Ω ± 25%
Resistance of the parallel PTC (R _p) at 25 °C	750 Ω to 3 k Ω
Coil impedance	13 Ω
Operating temperature range	
at zero power	-25 to 125 °C
at maximum power	0 to 60 °C

 R_S = series PTC R_D = parallel PTC R_C replaces the degaussing coil (Z = 13 Ω)

Fig.2 Measuring circuit.

MONO THERMISTOR

for degaussing

QUICK REFERENCE DATA

Minimum peak-to-peak inrush current at 220 V RMS	25 A
Maximum peak-to-peak current at 220 V RMS after 3 s after 3 min	250 mA 45 mA
Maximum RMS voltage	290 V
Operating temperature range at zero power at maximum voltage	-25 to + 125 °C 0 to + 55 °C

APPLICATION

These directly heated positive mono temperature coefficient thermistors are mainly used in degaussing circuits of colour television receivers and colour monitors.

DESCRIPTION

The thermistor consists of a disc encapsulated within a plastic housing. The pins are suitable for soldering directly onto a printed wiring board.

MECHANICAL DATA

Dimensions in mm

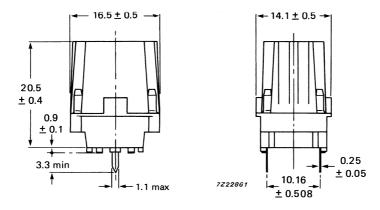


Fig.1 Component outline.

Climatic category 25/125/56 Minimum peak-to-peak inrush current at 220 V RMS 25 A

Maximum peak-to-peak current at 220 V RMS

 after 3 s
 250 mA

 after 3 min
 45 mA

Maximum RMS voltage 290 V

Resistance of the PTC at 25 °C 18 Ω ± 30%

Coil impedance 8 Ω

Operating temperature range

at zero power -25 to +125 °C at maximum power 0 to +55 °C

PTC THERMISTOR

disc

QUICK REFERENCE DATA

Resistance value at +25 °C	max. 0,6 Ω
Resistance value at +150 °C V _{pulse} = 16 V	min. 40 Ω
Switch temperature	+85 °C approximately
Temperature coefficient	+10%/K
Maximum DC voltage	16 V
Dissipation factor	27 mW/K
Operating temperature range	
at zero power	-25 to +155 °C
at V _{max}	–25 to +55 °C

APPLICATION

Overload protection, e.g. of relay coils, small motors, etc.

DESCRIPTION

The thermistor has a positive temperature coefficient. It consists of a disc with two tinned copper wires. The thermistor body is lacquered, but not insulated.

MECHANICAL DATA

Outlines

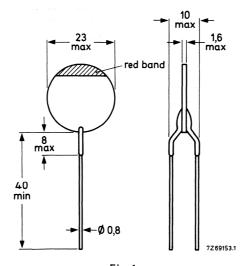


Fig. 1.

PACKAGING

100 thermistors in a cardboard box.

Marking

The thermistors are marked with a red band.

Mass

2.3 g approximately

Mounting

In any position by soldering

Robustness of terminations

Tensile strength

20 N

Bending

10 N

Soldering

Solderability

max. 240 °C, max. 4 s

Resistance to heat

max. 265 °C, max. 11 s

ELECTRICAL DATA

Unless otherwise specified, all measurements are in accordance with IEC Publication 738-1 (1982).

Resistance at -25 °C

max. 1,15 Ω *

Resistance between +25 and +55 °C

max. 0,6 Ω *

Resistance at +150 °C

V_{pulse} = 16 V

min. 40 Ω **

Switch temperature

+83 °C approximately

Temperature coefficient

10 %/K approximately

Dissipation factor

27 mW/K▲ approximately

Heat capacity

1,2 J/K▲ approximately

Thermal time constant

45 s▲ approximately

Operating temperature range

at zero power

-25 to +155 °C

at maximum voltage

-25 to +55 °C

Maximum voltage (DC)

16 V

▲ Measurements made with specimen in phosphor bronze clips, in still air.

^{*} DC measuring voltage not exceeding 1,5 V to avoid internal heating.

^{**} Measurement made without internal heating

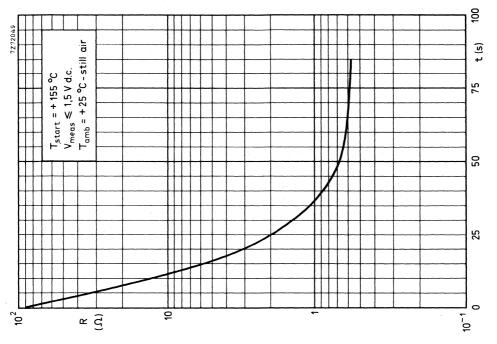


Fig. 3 Typical resistance/time (cooling) characteristic.

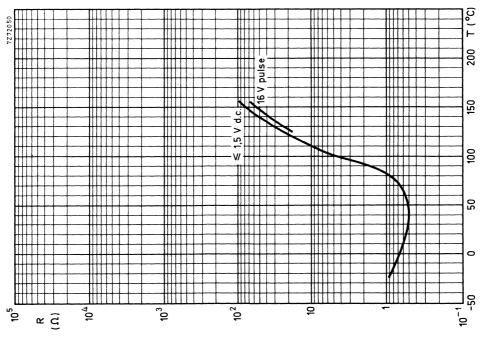


Fig. 2 Typical resistance/temperature characteristics.

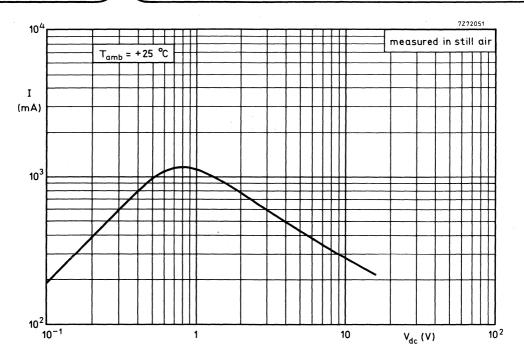


Fig. 4 Typical voltage/current characteristic.

PTC THERMISTORS

for overload protection

QUICK REFERENCE DATA

Resistance at 25 °C	1,6 to 90 Ω
Switch temperature	120 °C approximately
Maximum DC voltage	56 V
Trip current at 10 °C	112 to 1360 mA
Operating temperature range at V _{max}	0 to + 55 °C

APPLICATION

Overload protection, for use in electric and electronic equipment such as electric motors, transformers and semiconductor circuits.

DESCRIPTION

These thermistors have a positive temperature coefficient. They consist of a disc with two tinned brass wires, see Fig. 1a. Leadless types having metallized sides for soldering by the user are also available, see Fig. 1b.

MECHANICAL DATA

Outlines

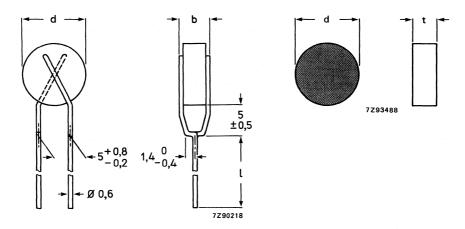


Fig. 1a.

Fig. 1b.

For dimensions b, d, I and t see Table 1.

Marking None

Mass (types with leads only)

See Table 1

Mounting In any position by soldering

Robustness of terminations

Tensile strength 10 N
Bending 5 N

Soldering

Solderability max. 240 °C, max. 4 s
Resistance to heat max. 265 °C, max. 11 s

When soldering leadless types it is recommended to use a flux containing colofonium and aethyl alcohol only and to pre-heat the discs to approx. 100 °C in order to avoid thermal shocks which might damage the thermistors.

Impact 200 mm free fall

Inflammability non-flammable

Packaging (for types with leads)

Cardboard boxes containing following items for:

 →
 2322 6601 . . . 1: 500
 2322 6621 . . . 1: 100

 →
 2322 6611 . . . 1: 250
 2322 6631 . . . 1: 100

 →
 2322 6621 1811. 200
 2322 6631 . . . 1: 100

ELECTRICAL DATA

Unless otherwise specified measured according to IEC publication 738-1 (1982).

Maximum current for not tripping at 55 °C

(measuring time 5 minutes)	Int	See Table 1
Minimum current for tripping after 5 minutes at 10 °C	$I_t = 2 \times I_{nt}$	See Table 1
Resistance at + 25 °C	R ₂₅	See Table 1
Switch temperature	T_S	$\approx 120~\text{oC}$
Maximum admissible current at 0 °C	I _{max}	See Table 1
Maximum residual current at 56 V (DC) at 10 °C	Ires max	See Table 1
Maximum DC voltage with a series resistor		56 V
Series resistor	R_s	See Table 1
Maximum d.c. voltage without series resistor		18 V
Dissipation factor at T _s	D	See Table 1
Heat capacity	Н	See Table 1

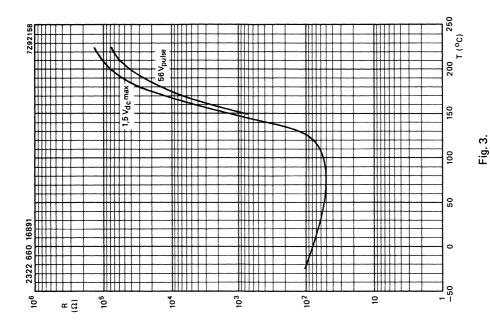
-25 to + 125 °C

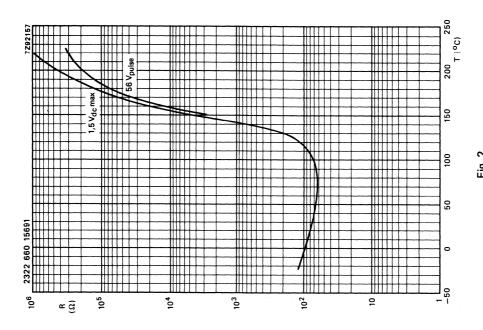
0 to + 55 °C

October 1988

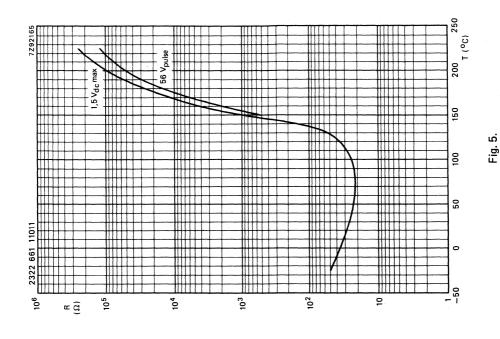
at zero power at maximum voltage

Operating temperature range

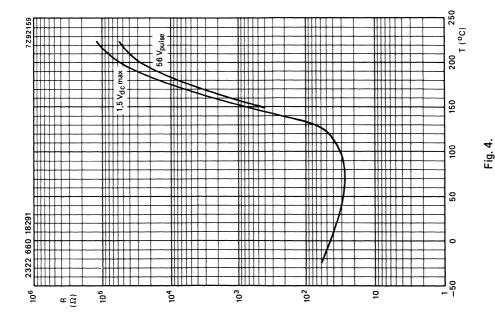

_
a
3
o,
_

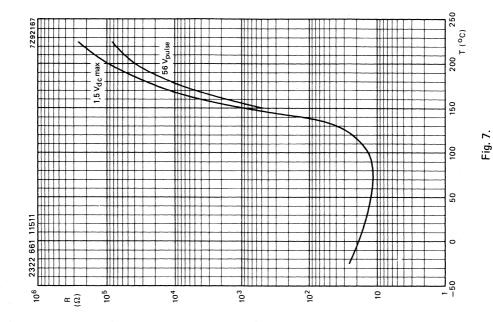

l able i													
	Į,	<u>+</u>	R25		Ires max		۵	エ	р	q	_	+	mass approx.
catalogue number	at	at 10 °C	approx.	at 0 oC	at 10 oC	± 2%	\sim	c. approx.		max.	۳+۱	max.	(types With
(see Notes I and Z)	mA	mA	ಚ	1	шĄ	i	mW/K	J/K	mm	mm	шш	шш	g g
2322 660 .5691	26	112	06	460	30	26	9	0,08	4,5	4	20	1,8	0,35
660 .6891	88	136	09	009	8	21	9	90,0	4,5	4	20	8,	0,35
	82	164	42	750	99	43	9	0,08	4,5	4	20	6	0,35
	100	200	32	950	35	36	7	0,15	6,5	4	20	ر هر	0,47
	120	240	22	1300	33	27	7	0,15	6,5	4	20	8,	0,47
	150	300	18	1600	40	22	7,5	0,16	8,0	4	20	6	0,65
	180	360	12,5	2200	45	16	∞	0,42	10,0	4,5	20	2,2	1,05
	220	440	6	2900	20	13	6	0,55	12,0	4,5	20	2,2	1,43
	270	540	6,5	4000	20	10	6	0,55	12,0	4,5	20	2,2	1,43
	330	099	4,3	9300	09	9,5	0	0,83	13,0	വ	20	2,9	2,15
	390	780	3,8	7300	70	5,1	12	1,24	16,0	ည	20	2,9	2,90
	470	940	2,6	12000	70	2,7	12	1,24	16,0	വ	20	2,9	2,90
	260	1120	2,2	14000	100	2,4	16	2,34	20,0	9	16	3,6	5,30
	089	1360	1,6	18000	9	2,0	16	2,34	20,0	9	16	3,6	5,30
											1		

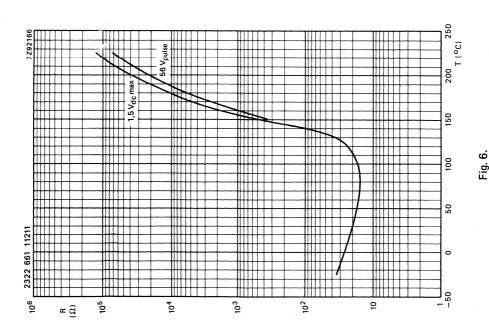
Notes to Table 1

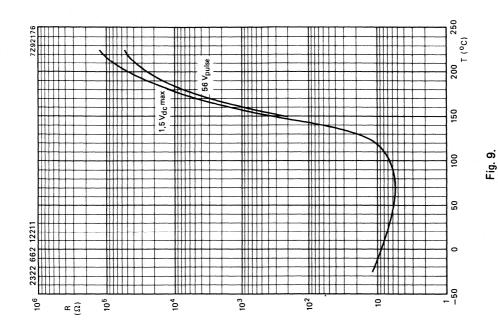

1. For leadless types, replace the dot in the catalogue number by 0; for types with leads, replace it by 1.

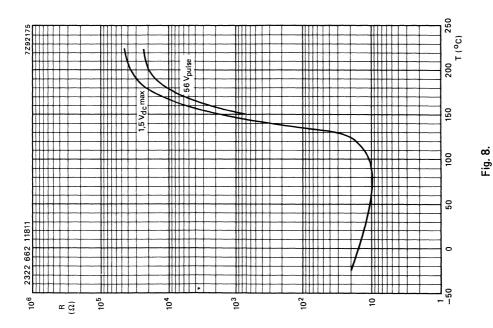
2. For taped devices up to 12 mm in diameter, replace the dot by 3.

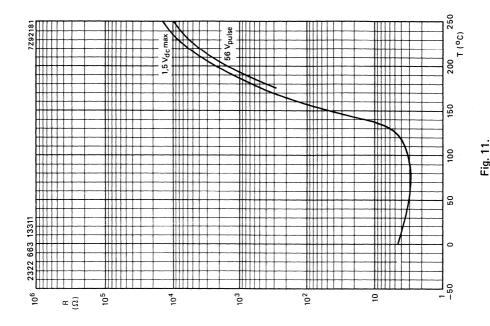


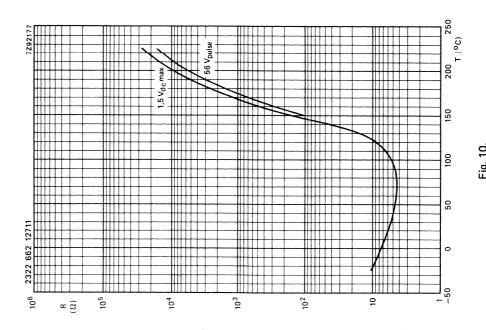


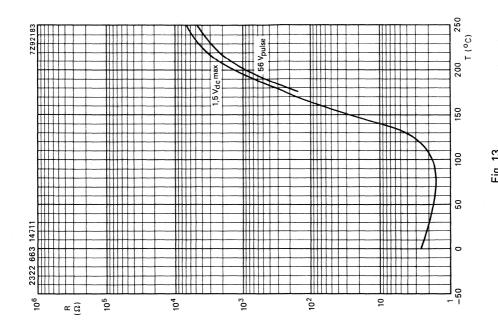

Typical resistance/temperature characteristics.

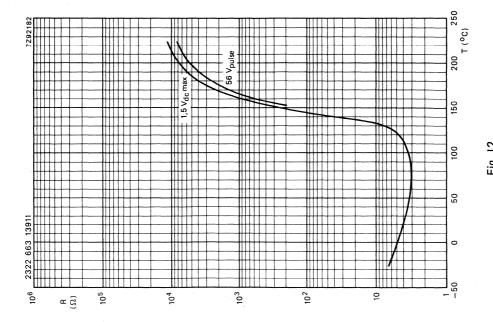

Typical resistance/temperature characteristics.

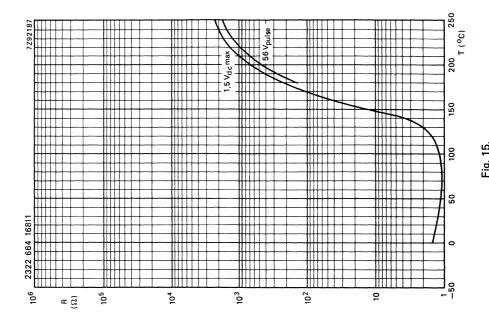




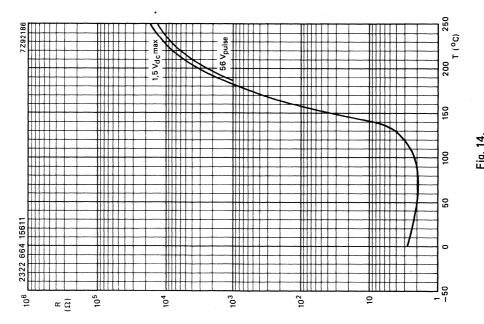

Typical resistance/temperature characteristics.


Typical resistance/temperature characteristics.





Typical resistance/temperature characteristics.



Typical resistance/temperature characteristics.

Typical resistance/temperature characteristics.

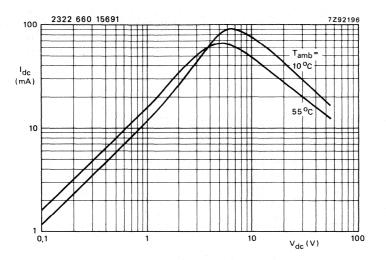


Fig. 16.

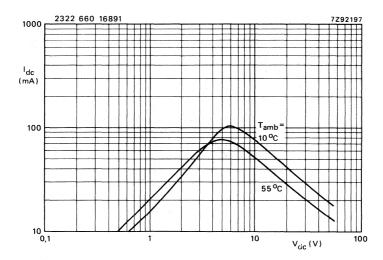


Fig. 17.
Typical voltage/current characteristics.

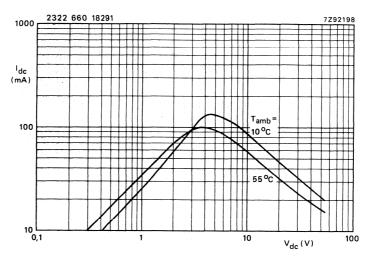


Fig. 18.

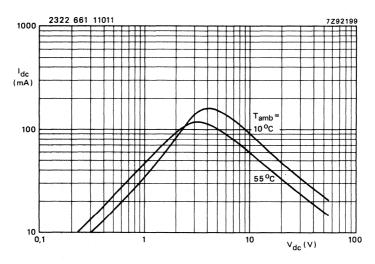


Fig. 19.

Typical voltage/current characteristics.

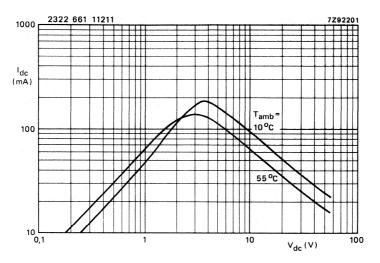


Fig. 20.

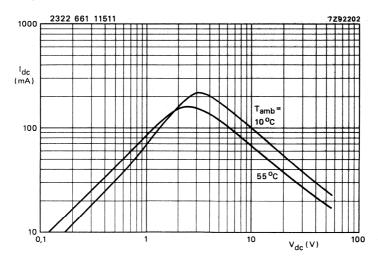


Fig. 21.

Typical voltage/current characteristics.

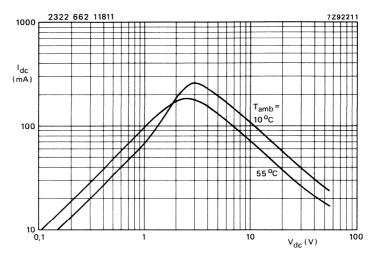


Fig. 22.

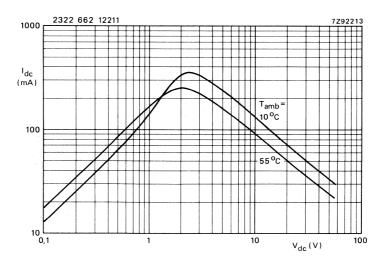


Fig. 23.

Typical voltage/current characteristics.

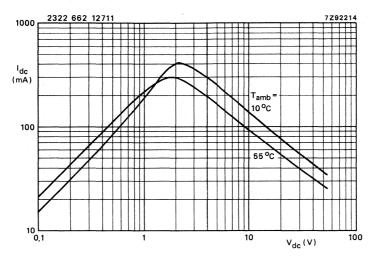


Fig. 24.

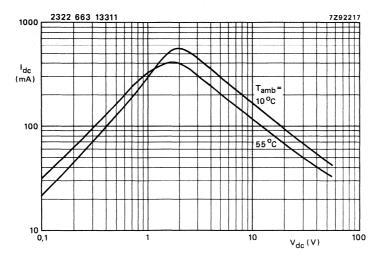


Fig. 25.

Typical voltage/current characteristics.

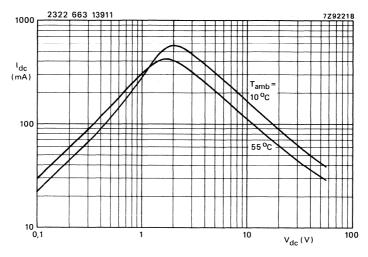


Fig. 26.

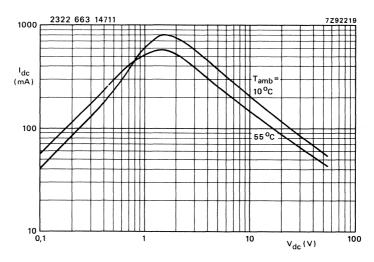


Fig. 27.

Typical voltage/current characteristics.



Fig. 28.

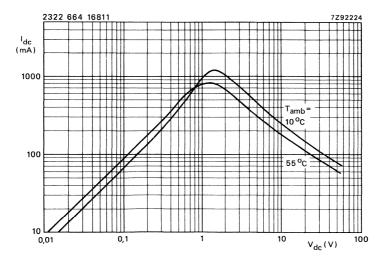



Fig. 29.
Typical voltage/current characteristics.

This data sheet contains advance information and specifications are subject to change without notice.

2322 66. 0...3 2322 66. 1...3

PTC THERMISTORS

for overload protection

QUICK REFERENCE DATA

3,5 to 1900 Ω
120 oC approximately
265 V
24 to 940 mA
0 to +55 °C

APPLICATION

Overload protection; for use in electrical and electronic equipment such as electric motors, transformers and semiconductor circuits.

DESCRIPTION

These thermistors have a positive temperature coefficient. They consist of a disc with two tinned brass wires, see Fig. 1a. Leadless types having metallized sides for soldering by the user are also available, see Fig. 1b.

MECHANICAL DATA

Outlines

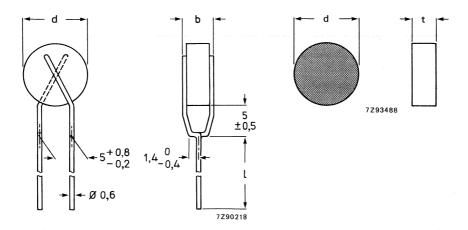


Fig. 1a.

Fig. 1b.

For dimensions b, d, I and t see Table 1.

Marking None

Mass (types with leads only)

See Table 1

Mounting in any position by soldering

Robustness of terminations

Tensile strength 10 N
Bending 5 N

Soldering

Solderability max. 240 °C, max. 4 s
Resistance to heat max. 265 °C, max. 11 s

When soldering leadless types it is recommended to use a flux containing colofonium and aethyl alcohol only and to pre-heat the discs to approx. 100 °C in order to avoid thermal shocks which might damage the thermistors.

Impact 200 mm free fall

Inflammability non-flammable

Packaging (for types with leads)

Cardboard boxes containing following items for:

 →
 2322 6601 . . . 3:
 500
 2322 6621 . . . 3:
 100

 →
 2322 6611 . . . 3:
 250
 2322 6631 . . . 3:
 100

 →
 2322 6621 1213:
 200
 2322 6641 . . . 3:
 100

ELECTRICAL DATA

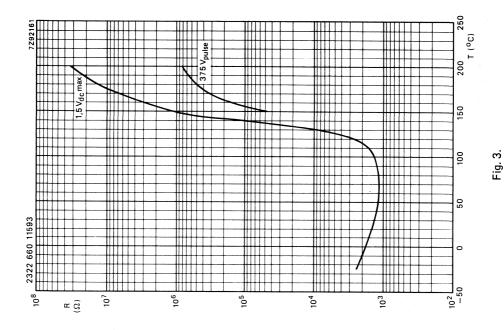
Unless otherwise specified measured according to IEC publication 738-1 (1982)

Maximum current for not tripping at 55 °C

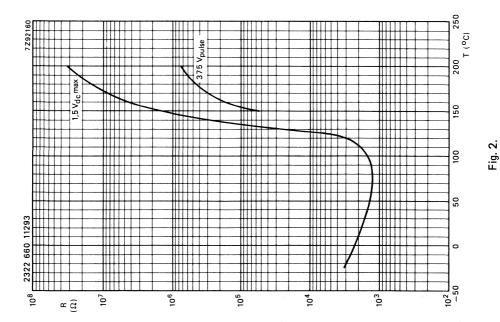
(measuring time 5 minutes)	Int	See Table 1
Minimum current for tripping after 5 minutes at 10 °C	$I_t = 2 \times I_{nt}$	See Table 1
Resistance at + 25 °C	R ₂₅	See Table 1
Switch temperature	Ts	≈ 120 °C
Maximum admissible current at 0 °C	I _{max}	See Table 1
Maximum residual current at 265 V (RMS) at 10 °C	I _{res max}	See Table 1
Maximum RMS voltage with a series resistor		265 V
Series resistor	Rs	See Table 1
Dissipation factor at T _S	D	See Table 1
Heat capacity	Н '	See Table 1

Operating temperature range

at zero power -25 to + 125 °C at minimum voltage 0 to + 55 °C


DEVELOPMENT DATA

_
`w
₹
늄
\vdash


mass approx. (types with leads only)	ם נ	0,45	0,45	0,45	0,45	0,45	0,70	0,70	0,70	0,70	06'0	06'0	06'0	1,30	1,80	1,80	2,15	2,90	5,30	5,30	5,30
t max.	EE C	ر ا ا	2,9	2,9	2,9	2,9	2,9	2,9	2,9	2,9	2,9	2,9	2,9	2,9	2,9	5,9	2,9	2,9	3,6	3,6	3,6
_ tl	E S	22	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	16	16	16
b max.	E L	ည	2	2	വ	വ	വ	വ	വ	വ	വ	വ	വ	വ	വ	വ	വ	ည	9	9	9
ъ	E .	4 کر	4,5	4,5	4,5	4,5	6,5	6,5	6,5		8,0	8,0	8,0	10,0	12,0	12,0	13,0	16,0	20,0	20,0	20,0
H approx.	¥	0,12	0,12	0,12	0,12	0,12	0,22	0,22	0,22	0,22	0,33	0,33	0,33	0,48	89′0	99'0	0,85	1,30	2,40	2,40	2,40
D approx.	aW/K	٥	9	9	9	9	7	7	7	7	œ	œ	œ	8,5	9,5	9,5	9	12	91	16	16
%		3	1100	1000	910	820	750	620	260	470	390	330	270	220	200	120	120	9	85	89	26
lres max at 10 oC	Am r	Ω	വ	വ	9	9	7	7	7	œ	œ	0	0	12	12	14	16	19	25	25	25
lmax at 0 oC	mA	2	135	165	200	220	290	320	420	200	009	730	006	1100	1300	1700	2100	2500	3000	3600	4300
R25 approx.	1	006	1200	820	260	380	280	200	140	100	72	20	33	56	20	14	10	ω	7	വ	3,5
lt at 10 oc	Am 5	747	90	36	44	54	99	78	94	112	136	164	200	240	300	360	440	540	099	780	940
Int at 55 oC	mA C	7	15	9	22	27	ဗ္ဗ	66	47	26	88	82	9	120	150	180	220	270	330	330	470
catalogue number Int (see Notes 1 and 2) at 55 oc	owed by				.2293																- 1
catalogue number (see Notes 1 and 2	2322 folic	7322 000	099	099	099	099	661	661	661	661	661	661	661	662	662	99	663	663	664	99	664

Notes to Table 1

1. For leadless types, replace the dot in the catalogue number by 0; for types with leads, replace it by 1. 2. For taped devices up to 12 mm in diameter, replace the dot by 3.

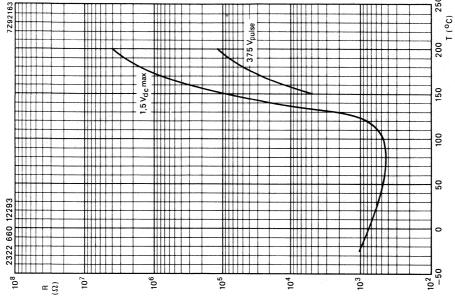
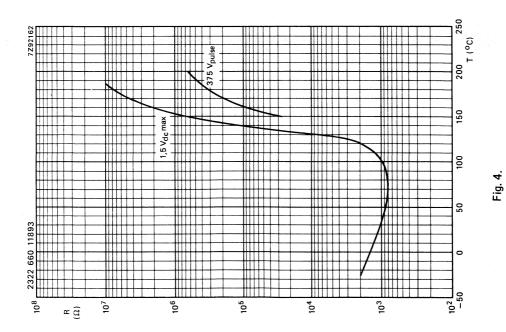
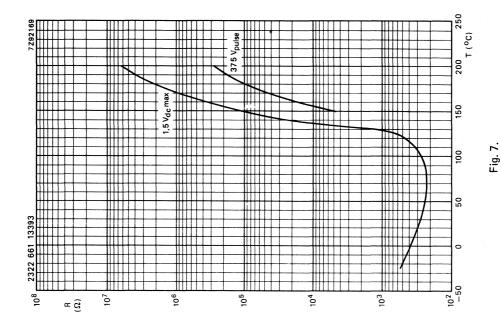
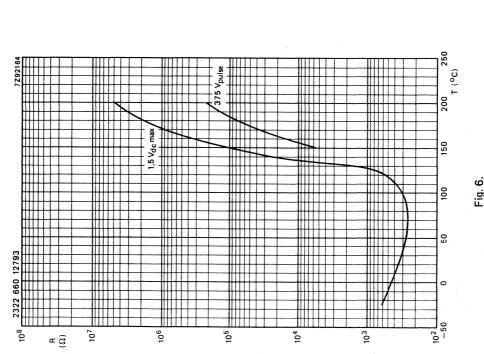
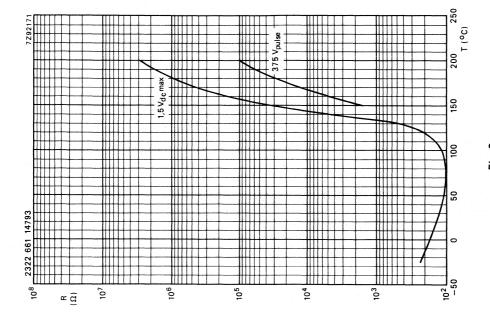
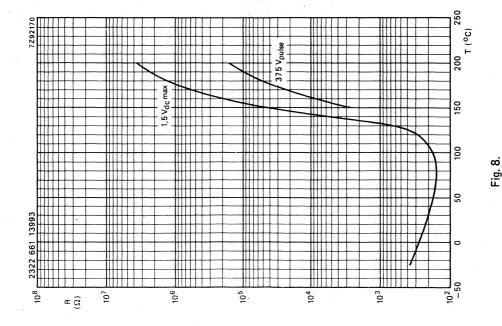
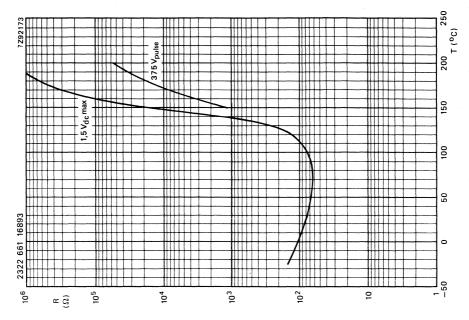





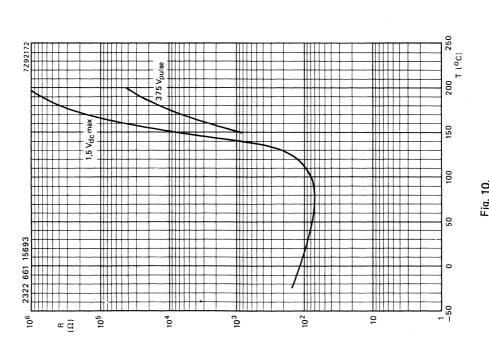
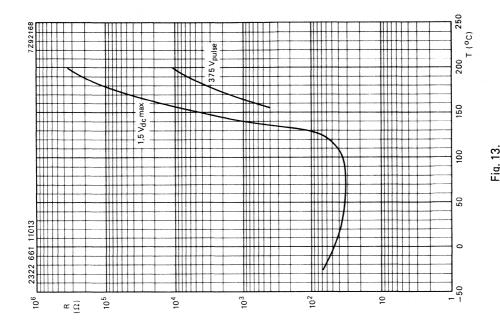
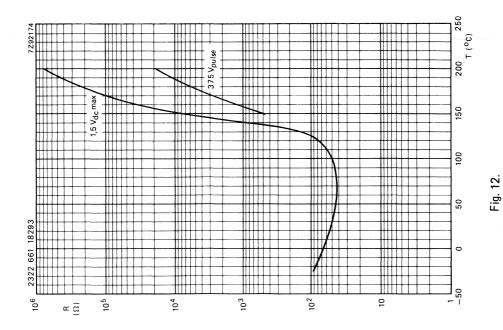
Fig. 5.

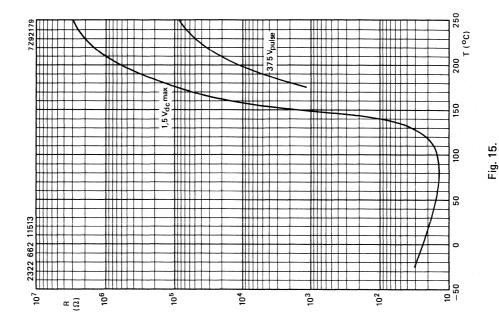

Typical resistance/temperature characteristics.

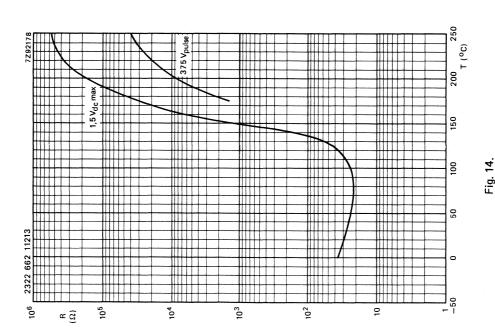


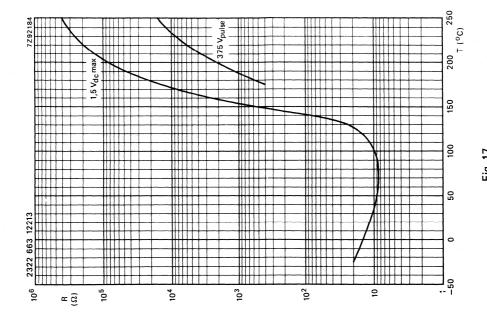


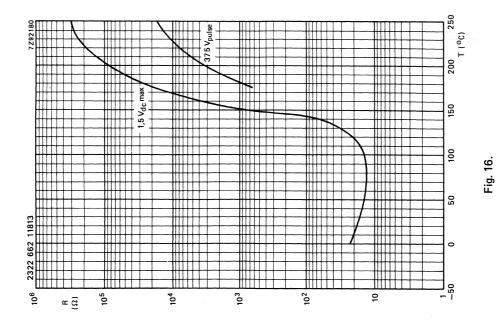
Typical resistance/temperature characteristics.

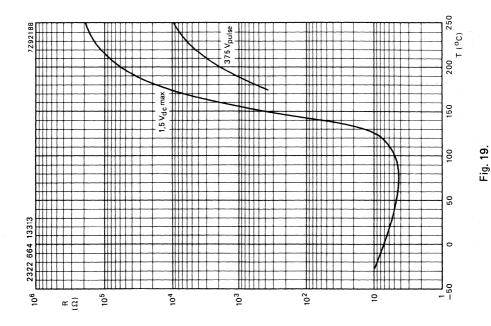




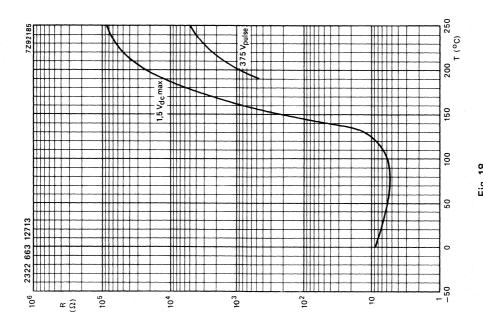

Fig. 11.

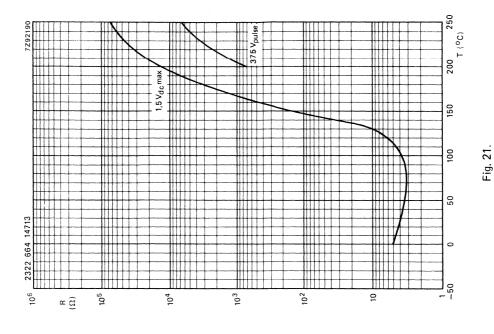

Typical resistance/temperature characteristics.

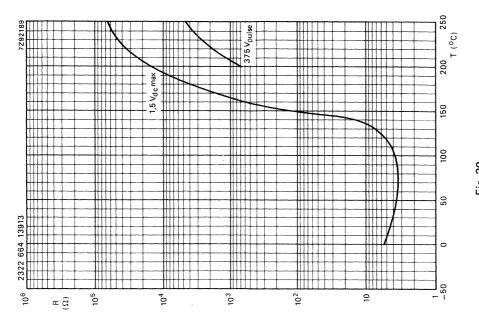

Typical resistance/temperature characteristics.






Typical resistance/temperature characteristics.


Typical resistance/temperature characteristics.



Typical resistance/temperature characteristics.

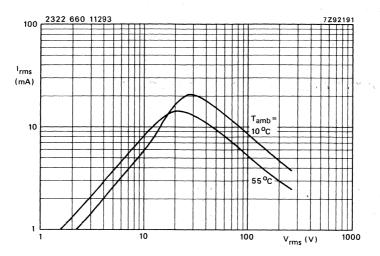


Fig. 22.

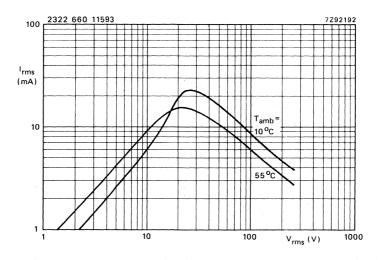


Fig. 23.
Typical voltage/current characteristics.

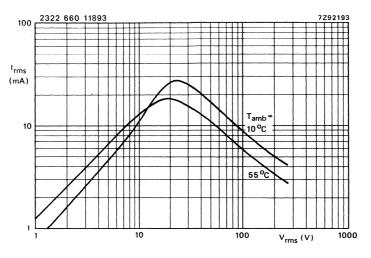
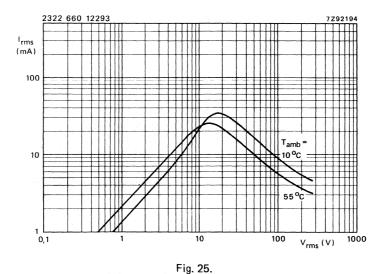



Fig. 24.

Typical voltage/current characteristics.

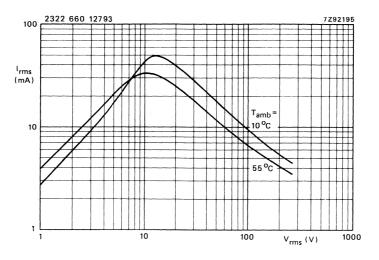


Fig. 26.

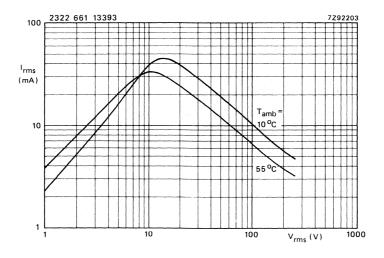


Fig. 27.
Typical voltage/current characteristics.

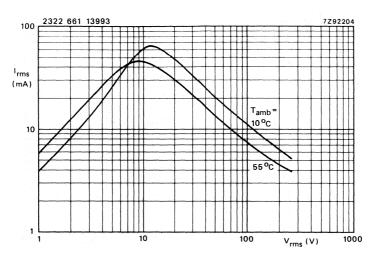


Fig. 28.

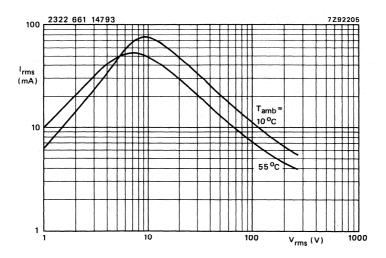


Fig. 29.
Typical voltage/current characteristics.

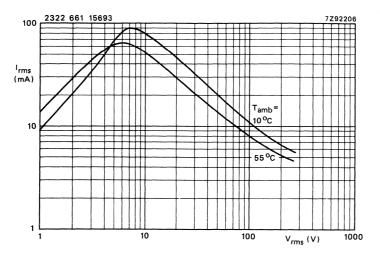


Fig. 30.

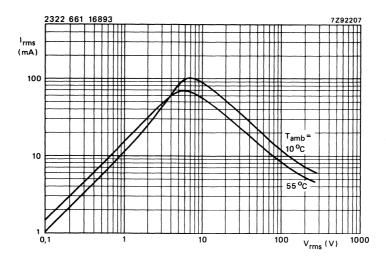


Fig. 31.
Typical voltage/current characteristics.

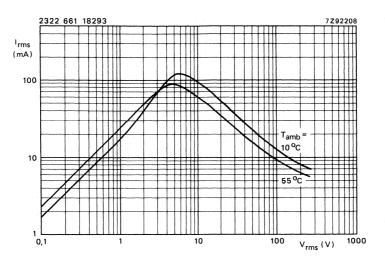


Fig. 32.

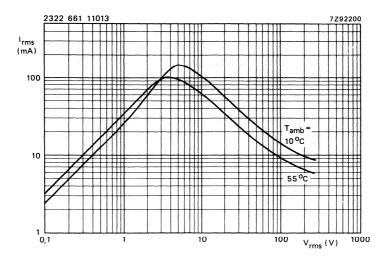


Fig. 33.
Typical voltage/current characteristics.

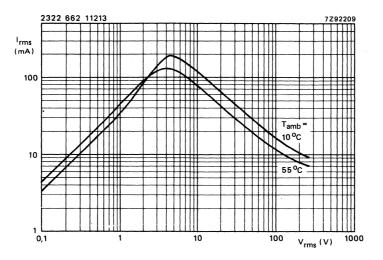


Fig. 34.

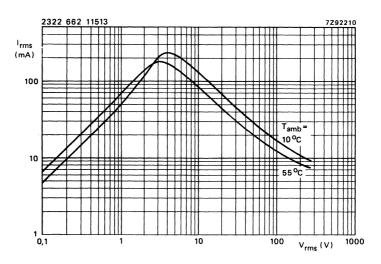


Fig. 35.
Typical voltage/current characteristics.

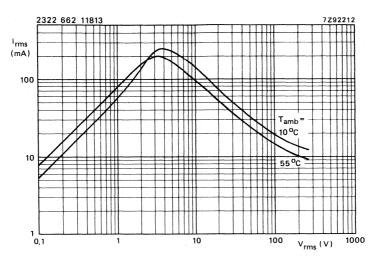


Fig. 36.

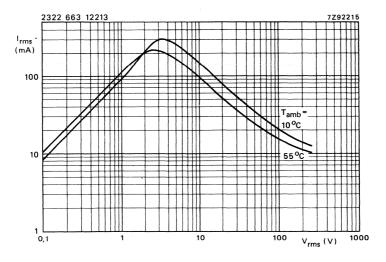


Fig. 37.
Typical voltage/current characteristics.

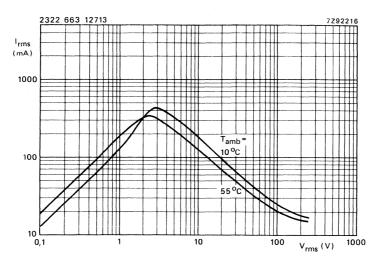


Fig. 38.

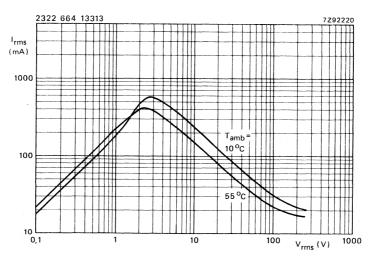


Fig. 39.

Typical voltage/current characteristics.

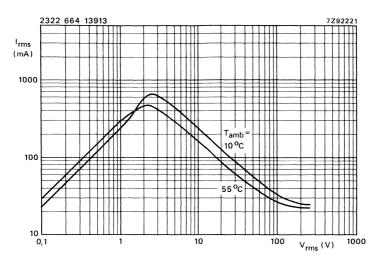


Fig. 40.

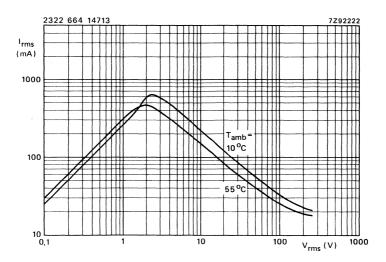



Fig. 41.
Typical voltage/current characteristics.

PTC THERMISTORS

for overload protection

QUICK REFERENCE DATA

Resistance at T_{amb} = +25 °C see Tables 2 and 3 Maximum resistance at T_{amb} = +115 °C see Tables 2 and 3 Switch temperature +115 °C Maximum voltage (d.c. or r.m.s.) 60 V (Table 2) or 245 V (Table 3) Dissipation factor see Tables 2 and 3 Ambient temperature range at maximum voltage 0 to +55 °C

APPLICATION

For protection of electric and electronic components against overload, e.g. motors, transformers, light dimmers, etc.

A selection from our range of PTC thermistors which are suitable for this purpose is given.

DESCRIPTION

Outlines

These thermistors have a positive temperature coefficient. They consist of a disc with two tinned copper or brass wires. The thermistors are neither lacquered nor insulated.

MECHANICAL DATA

Marking none Mass see Table 1 in any position by soldering Mounting Robustness of terminations Tensile strength Thermistors of Fig. 1 20 N 10 N Thermistors of Fig. 2 Bending Thermistors of Fig. 1 10 N 5 N Thermistors of Fig. 2 Soldering Solderability max. 240 °C, max. 4 s max. 260 °C, max. 11 s Resistance to heat Impact

impact

Free fall 1 m

Inflammability uninflammable

see Figs 1 and 2

Table 1 Outlines						Dimensions in mm
type	D ± 5%	L ± 5	C max.	d	mass approx. g	
2322 661 91019 2322 661 93001 2322 662 91004 2322 662 91006 2322 662 93015 2322 662 93017 2322 663 91002 2322 663 93006 2322 664 91002 2322 664 93014	8 8 10 12 10 12 16 16 20 20	54 54 55 56 55 56 58 58 60 60	7 13 11 11 13 13 11 13 11	0,8 0,8 0,8 0,8 0,8 0,8 0,8 0,8	0,8 1,3 0,9 1,1 1,6 2,1 1,7 3,3 2,2 4,8	
						Fig. 1.
2322 660 91017 2322 660 93006 2322 660 93011 2322 660 93013 2322 660 93014 2322 660 93014 2322 661 91021 2322 661 91005 2322 662 91007 2322 662 91007 2322 662 93016 2322 663 91003 2322 663 91003 2322 664 91003 2322 664 91003 2322 6672 91016 2322 672 91016	4,5 4,5 4,5 4,5 4,5 8 10 12 10 12 16 16 20 20 3 3	52,5 52,5 52,5 52,5 52,5 52,5 54 54 55 56 55 56 58 58 60 60 51,5 51,5	4 5,5 5,5 5,5 5,5 5,5 4 5,5 5,5 4 5,5 4 5,5 4 5,5 4 5,5 4 5,5	0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5	0,4 0,5 0,5 0,5 0,5 0,5 0,6 1,0 0,7 0,9 1,4 1,8 1,4 3,0 1,9 4,6 0,25 0,3	7271460.1 Fig. 2.

ELECTRICAL DATA

Table 2 Low-voltage PTC thermistors: V_{max} at + 55 °C = 60 V; T_s = + 115 °C

R ₂₅ Ω ± 25%	R_{115} Ω max.	I _{stat} A at 25 °C	peak \ at 55 °C	I _{max} A at 0 °C and 60 V	tresp s at 25 °C and I _{max}	D mW/K	I _{res} mA	R _s Ω min.	catalogue number
1,65	3,5	0,85	0,64	7,5	3	20	63	6,2	2322 664 91002
1,65	3,5	0,75	0,57	6,5	3	15	53	7,5	664 91003
2,3	5	0,63	0,47	5,25	3	15	51	9,1	663 91002
2,3	5	0,50	0,37	4,5	3	10	36	11	663 91003
3,7	7	0,44	0,33	3,5	3	12	39	13,5	662 91006
3,7	7	0,35	0,26	2,75	3	7,5	29	18	662 91007
5,6	12	0,34	0,25	2,7	3	11	31	16	662 91004
5,6	12	0,26	0,195	2	3	6,5	22	24	662 91005
9,4	20	0,25	0,19	1,9	3	10	28	22	661 91019
9,4	20	0,18	0,135	1,3	3	5	16	36	661 91021
25	55	0,09	0,068	0,65	3	4	12,5	68	660 91017
55	120	0,059	0,044	0,4	3	3,5	10,5	95	672 91016

Table 3 High-voltage PTC thermistors: V_{max} at + 55 °C = 245 V; T_{s} = + 115 °C

R ₂₅ Ω	R ₁₁₅ Ω	I _{stat} A	peak	I _{max} A	^t resp s	D mW/K	I _{res} mA	$^{R_{S}}_{\Omega}$	catalogue number
± 25%	max.	at 25 °C	at 55 °C	at 0 °C and 245 V	at 25 °C / and I _{max}		, .	min.	
3,7	8	0,55	0,41	4,9	6	20	18	47	2322 664 93014
3,7	. 8	0,5	0,38	4,5	6	15,5	17	51	. 664 93015
6	15	0,4	0,3	3,0	6	16	16	75	663 93006
6	15	0,35	0,25	3,5	6	11	13	91	663 93007
10	25	0,27	0,2	1,8	7	12,5	14	120	662 93017
10	25	0,235	0,175	1,5	7	9	10	150	662 93018
15	40	0,215	0,162	1,3	7	11	14	180	662 93015
15	40	0,162	0,120	1	7	6,5	8,5	220	662 93016
25	60	0,150	0,115	0,9	7	10	11,5	240	661 93001
25	60	0,115	0,087	0,7	7	5,5	7	330	661 93002
70	160	0,059	0,045	0,25	8	4	5,5	910	660 93006
120	400	0,045	0,034	0,19	8	7	5	1100	660 93011
150	400	0,036	0,027	0,1	8	4	4,5	2200	672 93003
600	3000	0,020	0,015	0,085	8	7	4,5	2200	660 93012
1200	4000	0,014	0,011	0,060	8	7	4,5	2700	660 93013
1500	5000	0,013	0,010	0,055	8	7	4,5	3000	660 93014

Definitions of terms used in Tables 2 and 3.

 V_{max} max. d.c. or a.c. voltage at + 55 °C. Istat peak max. stationary operating current. Imax max. current at $T_{amb} = 0$ °C.

I_{resp} time taken for the thermistor to reach the switching temperature.

D dissipation factor measured in still air.

Ires residual current at Vmax.

PTC THERMISTOR

QUICK REFERENCE DATA

Resistance	
at +25 °C	120 ± 30 Ω
at + 200 °C	$>$ 6 k Ω
Switch temperature	145 °C approx.
Temperature coefficient	>8%/K
Maximum voltage (DC) at +40 °C	34 V
Response time	≤ 2 s
Operating temperature range	
at zero power	-25 to +155 °C
at maximum voltage	0 to +40 °C

APPLICATION

Current stabilizer for compensation of variation in telephone line resistance.

DESCRIPTION

A miniature thermistor element mounted in a glass envelope model DO-7 with two axial leads.

MECHANICAL DATA

Outlines

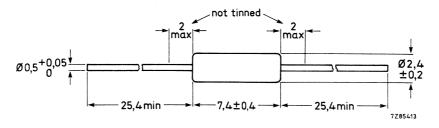
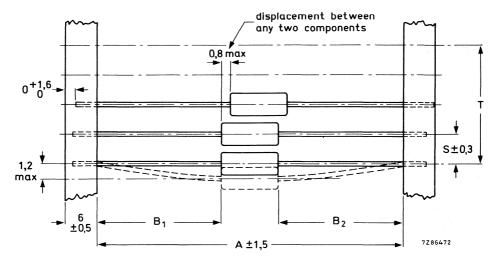



Fig. 1 Component outline.

STANDARD PACKAGING

The thermistors are supplied in quantities of 5000 on bandolier which is zig-zag folded in an ammopack. Configuration of bandolier

style	•	Α	B ₁ B ₂ ± max.	S (spacing)	T (max. deviation of spacing)
TPJ		53	1,2	5	2 mm for 10 spacings, 1,5 mm for 5 spacings

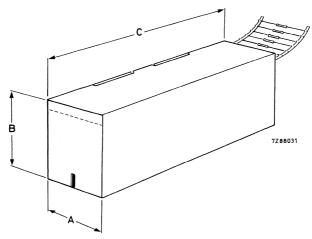


Fig. 3 Dimensions of ammopack in mm.

A= 75 mm

B = 95 mm

C = 270 mm

PTC THERMISTORS

disc

QUICK REFERENCE DATA

Resistance value between -20 and $(T_s - 10)$ O	C	30 to 250 Ω
Resistance value at $(T_s + 25)$ °C and $V_{pulse} = 1$	7,5 V	≥ 4000 Ω
Switch temperature, T _S		70 to 150 °C
Temperature coefficient		18 to 38%/K
Maximum voltage (DC)		25 V
Dissipation factor (version with leads)		5,7 mW/K approximately
Operating temperature range at zero power at maximum voltage		-25 to (T _s + 40) °C 0 to (T _s + 25) °C

APPLICATION

Temperature sensors in domestic appliances, fire alarms, car electronics, etc.

DESCRIPTION

These thermistors have a positive temperature coefficient. They consist of a disc with or without two tinned copper wires. The thermistor without leads is not lacquered nor insulated. The thermistor with leads is lacquered but not insulated.

MECHANICAL DATA

Outlines

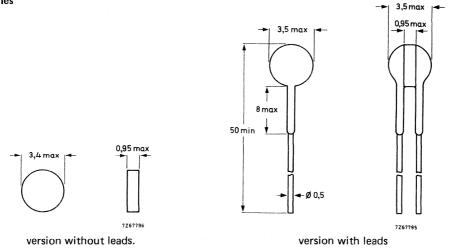


Fig. 1.

2322 672 91002 to 2322 672 91035

Marking

Version without leads

Version with leads

none

colour code, see table

Mass

Version without leads

Version with leads

0,04 g approx.

0,29 g approx.

Mounting (for version with leads only)

In any position by soldering.

Robustness of terminations (for version with leads only)

- Tensile strength

5 N

2,5 N

Bending

Soldering (for version with leads only)

Solderability

Resistance to heat

max. 240 °C, max. 4 s

max. 265 °C, max. 11 s

Impact

Free fall 1000 mm

PACKAGING

Version without leads: 5000 thermistors in a cardboard box. Version with leads: 500 thermistors in a cardboard box.

ELECTRICAL DATA

All values without further indication are approximate values.

Ts	temperature coefficient	erature coefficient colour code for version			
oC	%/K	with leads	with leads	without leads	
70	18	violet	91002	91026	
80	21	grey	91003	91027	
90	31	white	91004	91028	
100	33	black	91005	91029	
110	38	brown	91006	91031	
120	27	red	91007	91032	
130	33	orange	91008	91033	
140	33	yellow	91009	91034	
150	23	green	91011	91035	

Resistance value between -20 and $(T_s - 10)$ °C

Resistance value at (T_s + 5) °C

Resistance value at (T_s + 15) ^oC

Resistance value at $(T_s + 25)$ °C, $V_{pulse} = 7.5$ V

Maximum voltage (DC)

Dissipation factor (version with leads)

Thermal time constant (version with leads)

Heat capacity (version with leads)

Operating temperature range

at zero power

at maximum voltage

30 to 250 Ω *

≤ 550 Ω *

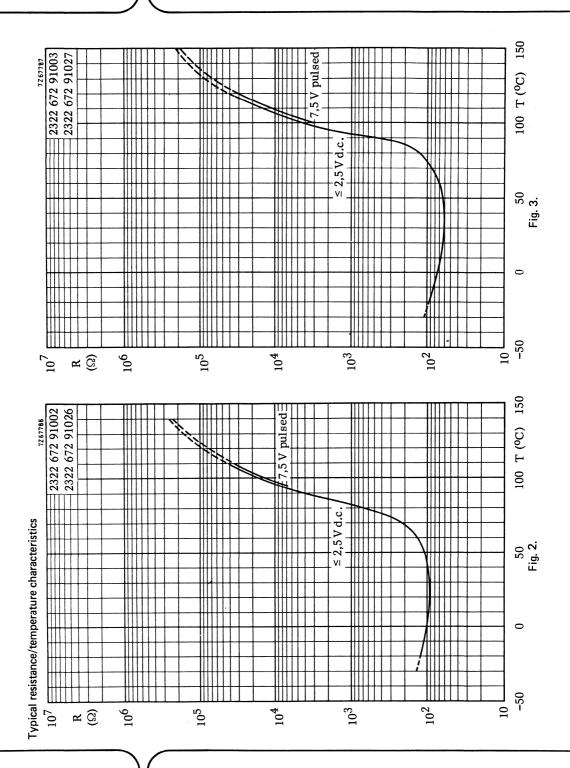
≥ 1330 Ω *

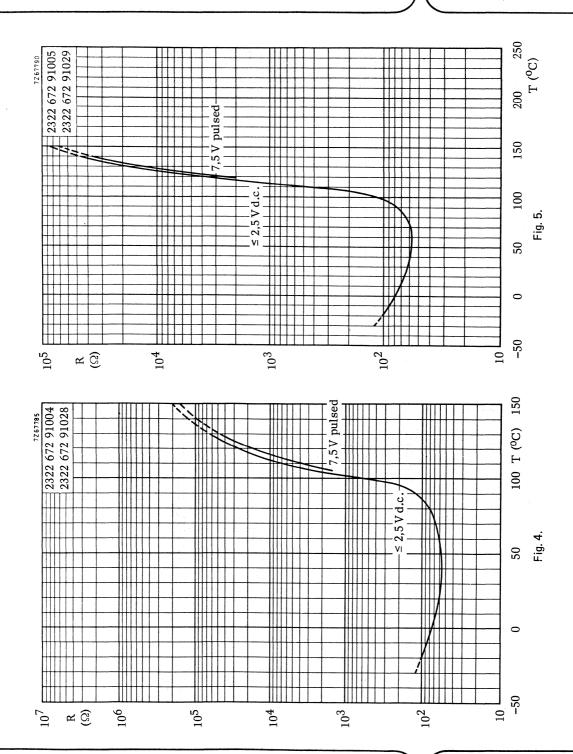
 \geq 4000 Ω **

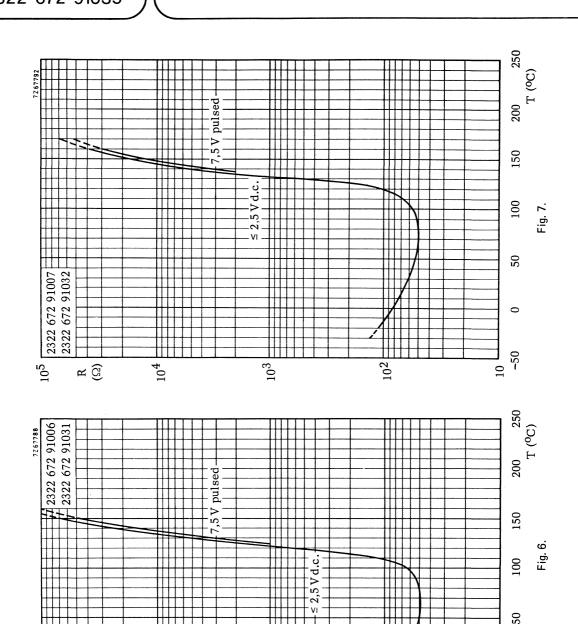
25 V

5,7 mW/K approximately

9 s approximately

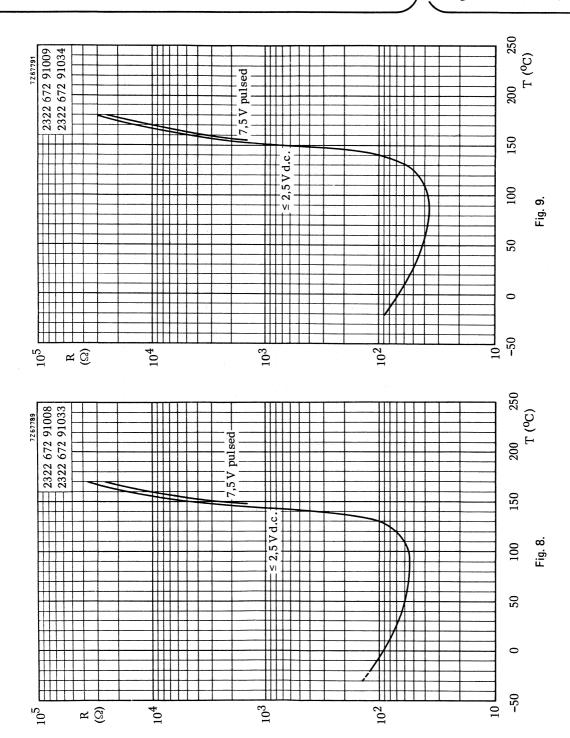

0,05 J/K approximately

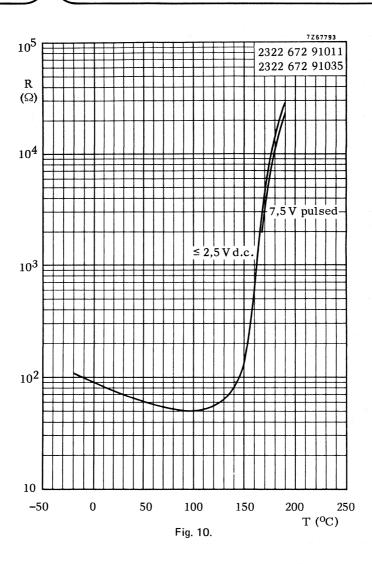

-25 to (T_s + 40) °C


0 to (T_s + 25) °C

^{*} Measuring voltage not exceeding 2,5 V DC to avoid internal heating.

^{**} Measurements made without internal heating occurring.





0

-50

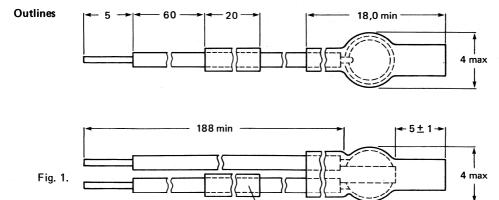
R (3)

PTC THERMISTORS

for motor protection

QUICK REFERENCE DATA

Resistance value at -20 and T _{ref} -20 °C	30 to 250 Ω
Resistance value at T _{ref} + 15 °C, V _{pulse} = 7,5 V	$>$ 4000 Ω
Maximum voltage (DC)	15 V
Switch temperature, T _S	68 to 137 °C
Dissipation factor	7 mW/K approximately
Operating temperature range at zero power at V _{max}	-20 to T _{ref} + 30 °C -20 to T _{ref} + 15 °C


APPLICATION

These thermistors have been designed for use in transistorized circuits for the protection of electric motors against overheating. They are to be built into the windings of the stator (one PTC thermistor per phase).

DESCRIPTION

The thermistors have a positive temperature coefficient. They consist of a disc with two tinned multistrand copper wires insulated with PTFE material complying with the requirements of the ministry of aviation specification EL1930.

MECHANICAL DATA

Marking The last five figures of the catalogue number are printed on the sleeve, e.g. PTC 92046.

Mass 1,6 g approximately.

Mounting In motor windings; connections to be soldered or clamped.

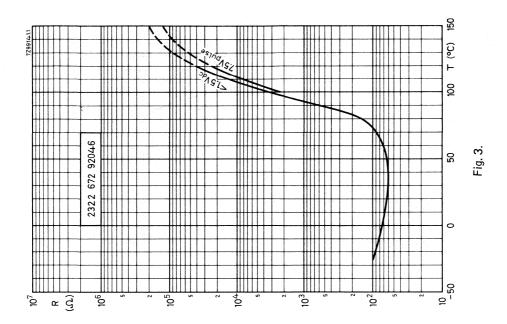
PACKAGING

200 thermistors in a cardboard box.

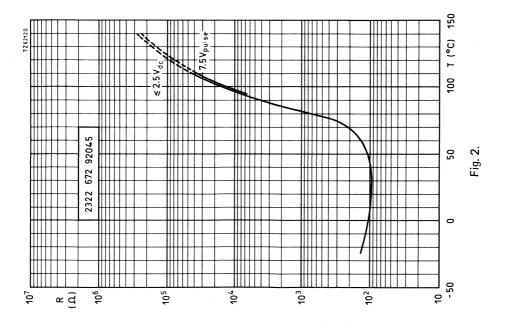
7Z93486.1

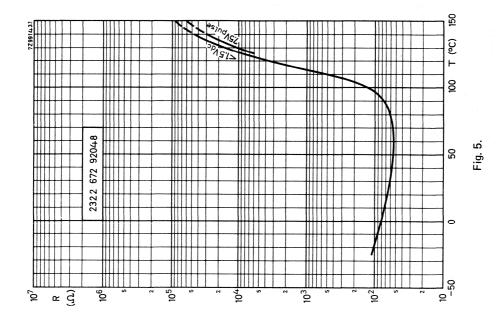
ELECTRICAL DATA

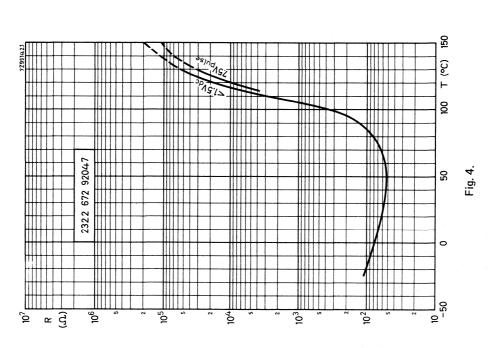
Unless otherwise specified, all measurements are in accordance with IEC Publication 738-1 (1982).

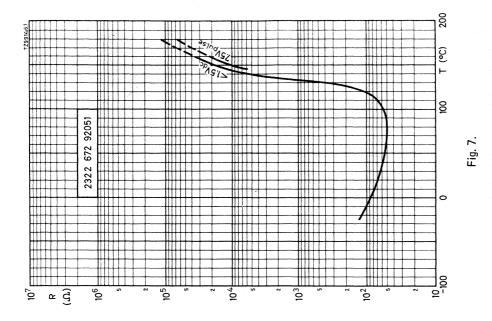

T _{ref} °C (note 1)	T _s oc	temperature coefficient %/K	catalogue number	
80 90	68 75	18 21	2322 672 92045 92046	
100	88	31	92047	
110	99	33	92048	
120	113	38	92049	
130	123	27	92051	
140	130	33	92052 92053	
150	137	33	92053	
Resistance betw	een –20 and T _{ref} -	- 20 °C	30 to 250 Ω	notes 2
Resistance at T _{ref} –5 °C		< 550 Ω	2	
Resistance at T _{ref} + 5 °C		$>$ 1330 Ω		
Resistance at T _{ref} + 15 °C, V _{pulse} = 7,5 V		$>$ 4000 Ω	3	
Dissipation factor		7 mW/K approximately	4	
Heat capacity			0,1 J/K approximately	4
Thermal time constant		14 s approximately	4	
Response time			≤8 s	5
Operating temp			-20 to + T _{ref} +30 °C	
at zero powei at V _{max}			-20 to + T _{ref} + 15 °C	
Maximum voltage (DC)		15 V		
	tanding voltage (RM ninals and lead insul		≥ 2500 V	
			≥ 2500 V	
and lead insu	ance between termi lation	nals	\geqslant 100 M Ω	
Robustness of t	erminations			
tensile streng	th		10 N	
bending			5 N	
Soldering				
solderability			max. 240 °C, max. 4 s	
resistance to	heat		max. 265 °C, max. 11 s	

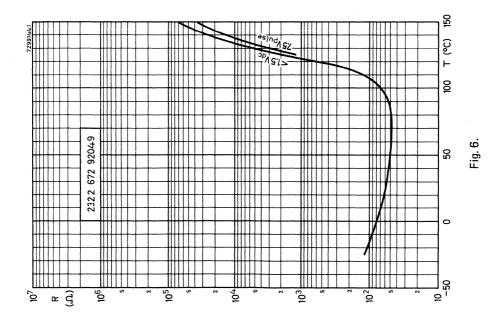
Notes

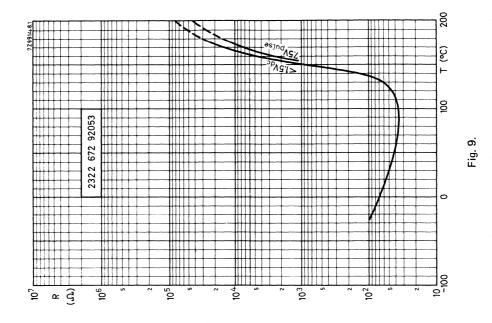

- 1. Tref is the temperature at which the thermistor has to make the protective system operative.
- 2. Measuring voltage not exceeding 1,5 V (DC) to avoid internal heating.
- 3. Measurements made without internal heating occurring.
- 4. Measurements made with specimen in phosphor-bronze clips, in still air.
- 5. Response time is the time in which the thermistor-body temperature rises to 63,2% of the difference between initial and final body temperature, when the thermistor is subjected to a step function change in ambient temperature.


Initial temperature: 25 °C (air).

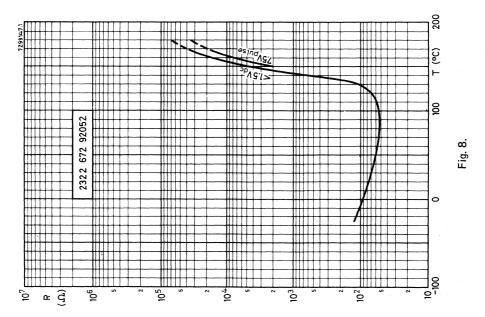

Final temperature: T_{ref} + 15 °C (silicon oil MS 200/50).


Typical resistance/temperature characteristics.





Typical resistance/temperature characteristics.



Typical resistance/temperature characteristics.

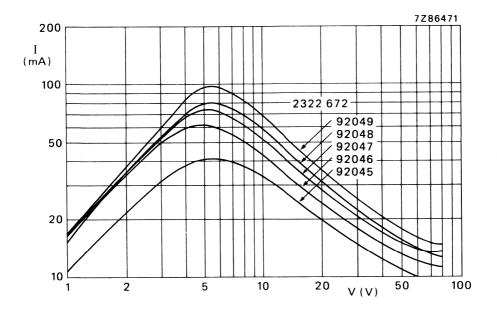


Fig. 10.

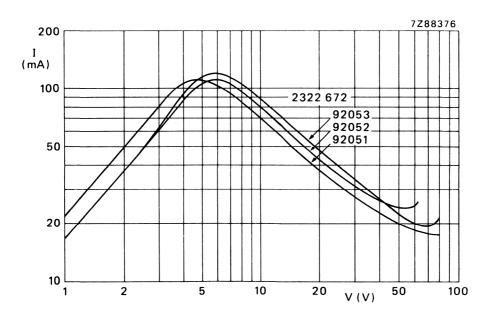


Fig. 11.
Typical voltage/current characteristics.

PTC THERMISTOR

QUICK REFERENCE DATA

Resistance value at + 25 °C		115 ± 25 Ω
Resistance value at + 155 °C, V _{pulse}	= 33 V	min. 15 k Ω
Switch temperature		+97 °C approximately
Temperature coefficient		min. 10%/K
Maximum voltage (DC)		33 V
Operating temperature range at zero power at maximum voltage		-25 to +155 °C +5 to +55 °C

APPLICATION

As current stabilizer for compensation of variations in telephone line resistance.

DESCRIPTION

Disc with positive temperature coefficient, mounted between pressure contacts to ensure a long cycle life. Provided with two silvered pins for mounting in a printed-wiring board. Plastic encapsulation.

MECHANICAL DATA

Outlines

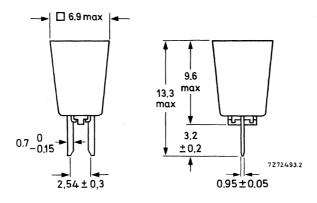


Fig. 1 Component outline

PACKAGING

5000 thermistors in a cardboard box (containing 10 foam plastic trays).

2322 672 98001

Marking

Manufacturer's identification symbol and the letters TPE, representing the model, are moulded in the top of the cap.

Mass

0,4 g approximately

Mounting

to be soldered onto a printed-wiring board

Robustness of terminations

Tensile strength

10 N

Soldering

Solderability

max. 240 °C, max. 4 s

Resistance to heat

max. 265 °C, max. 11 s

Vibration

in accordance with CCTU 01-01A fasc. 16 A severity 55 A

Impact

Free fall

1000 mm

Inflammability

uninflammable

ELECTRICAL DATA

The values without further indication are approximate values.

Resistance

at + 25 °C

at +97 °C

at + 155 °C, $V_{pulse} = 33 V$

- Puise

Switch temperature

Temperature coefficient

Operating temperature range

at zero power

at maximum voltage

Maximum voltage (DC)

Dissipation factor

Thermal time constant

115 ± 25 Ω

max. 600 Ω

min. 15 000 Ω

+97 °C

. . .

min. + 10%/K

-25 to +155 °C +5 to +55 °C

33 V

,, v

3,9 mW/K

12 s

Maximum dielectric withstanding voltage (RMS) between terminals and capsule Insulation resistance between terminals and capsule at 100 V (DC)

500 V

min. 10 M Ω

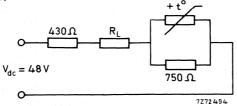


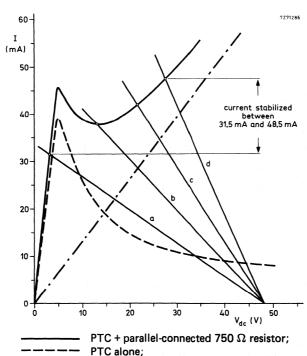
Fig. 2 Line resistance (R_L) compensation.

Initial current of +5 °C and $R_L = 0$

Current after 10 s at +5 °C and R_L = 0

Initial current at +55 °C and R_L = 0

Current after 10 s at +5 °C and R_L = 0

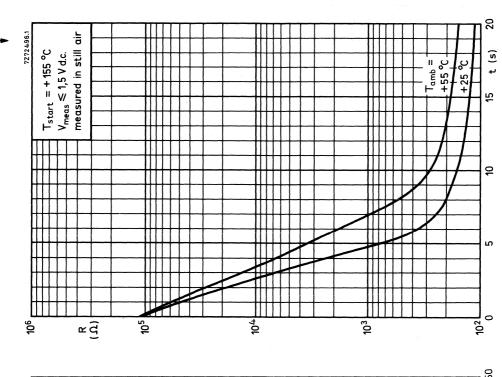

min. 75 mA

max. 95 mA

max. 60 mA min. 85 mA

max. 105 mA

max. 55 mA



750 Ω resistor alone.

Fig. 3 (a) R_L = 1000 Ω ; (b) R_L = 500 Ω ;

(c) $R_L = 200 \Omega$;

(d) $R_L = 0 \Omega$.

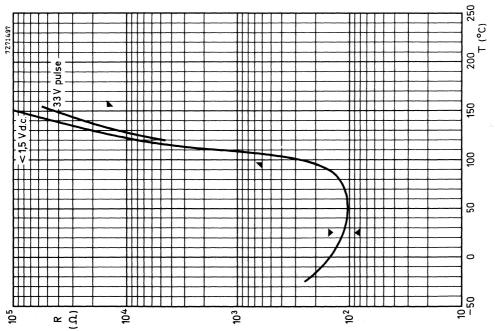


Fig. 4 Typical resistance/temperature characteristics.

Fig. 5 Typical resistance/time (cooling) characteristics.

March 1989

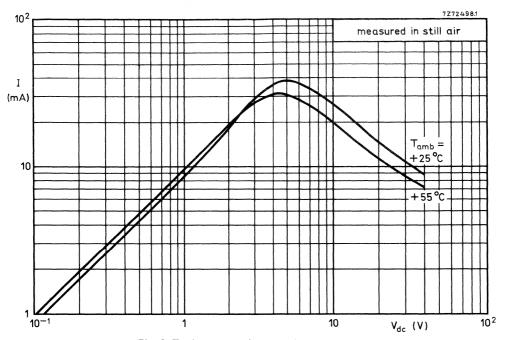


Fig. 6 Typical voltage/current characteristics.

Note:

Figs 5, 6 and 7 are measured with the PTC mounted on a printed-wiring board.

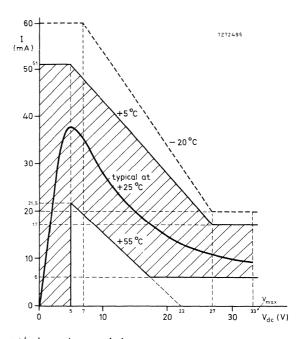


Fig. 7 Area of current/voltage characteristics.

VARISTORS (VDR)

INTRODUCTION

Varistors provide reliable and economical protection against high voltage transients and surges which may be produced, for example, by lightning, switching or electrical noise on AC or DC power lines. They have the advantage over transient suppressor diodes in as much as they can absorb much higher transient energies and can suppress positive and negative transients.

When a transient occurs, the varistor resistance changes from a very high standby value to a very low conducting value. The transient is thus absorbed and clamped to a safe level, protecting sensitive circuit components.

The main features of our varistor range are:

- wide voltage range selection from 14 V to 550 V RMS. This allows easy selection of the correct component for the specific application
- · high energy absorption capability with respect to size of component
- response times of less than 20 ns, clamping the transient the instant it occurs
- · low standby power virtually no current is used in the standby condition
- · low capacitance values, making the varistors suitable for the protection of digital switching circuitry
- high body insulation an ochre coating provides protection up to 2500 V, preventing short circuits to adjacent components or tracks
- available on tape with accurately defined dimensional tolerances, making the varistors ideal for automatic insertion
- approved to Underwriter Laboratory (UL) E-98144 Vol. 1, Sec. 1, and manufactured using UL approved flame retardent materials
- · completely non flammable, in accordance with IEC, even under severe loading conditions
- non porous lacquer making the varistors safe for use in humid or toxic evironments. The lacquer is also resistant to cleaning solvents in accordance with IEC 68-2-45
- CECC qualification has been granted for the current range of varistors in production.

VARISTOR MANUFACTURING PROCESS

In order to guarantee top performance and maximum reliability, close in line control is maintained over the automated manufacturing techniques. Figure 1 shows each step of the manufacturing process, clearly indicating the emphasis placed on in line control.

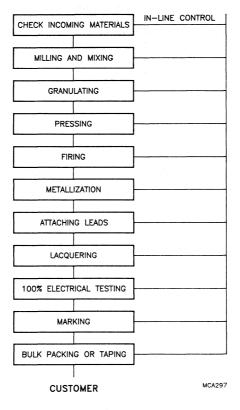


Fig.1 Manufacturing process flow chart.

Each major step in the manufacturing process shown in Fig.1 is described in the following paragraphs:

· Milling and mixing

Incoming materials are checked, weighed, milled and mixed for several hours to make a homogeneous mixture.

Granulation

A binder is added to produce larger granules for processing.

Pressing

The surface area and thickness of the disc help to determine the final electrical characteristics of the varistor, therefore pressing is a very important stage in the manufacturing process. The granulated powder is fed into dies and formed into discs using a high speed rotary press.

Firing

The pressed products are first pre-fired to burn out the binder. They are then fired for a controlled period and temperature until the required electrical characteristics are obtained. Regular visual and electrical checks are made on the fired batch.

Metallization

The fired ceramic discs are metallized on both faces to produce good electrical contacts. Metallization is achieved by evaporation in a vacuum. Visual checks are made regularly and a solderability test is carried out in each production batch.

· Attaching leads

Leads are automatically soldered to the metallized faces and regular tensile strength tests are made. Three types of lead configuration are available; one with straight leads, one with straight leads with flange, and one with kinked leads.

Lacquering

The components are coated by immersing them in a special non flammable ochre epoxy lacquer. Two coats are applied and the lacquer is cured. Regular tests to check the coating thickness are made.

· 100% electrical testing

The voltage of each component is checked, normally at 1 mA, but any other current may be specified. Any rejects are automatically separated for further evaluation.

Marking

All components are laser marked.

Varistors are manufactured from a non-homogeneous material, giving a rectifying action at the contact points of two particles. Many series and parallel connections determine the voltage rating and the current capability of the varistor.

Figure 2 shows the structure of a varistor.

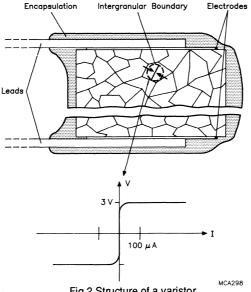


Fig.2 Structure of a varistor.

VARISTORS INTRODUCTION

QUALITY

Approvals

- CECC 42 201-001 (for 30 550 V ranges)
- UL E98144
- VDE 53 138 E (for 60 460 V ranges)

The term 'QUALITY ASSESSMENT' is defined as the continuous surveillance by the manufacturer of a product to ensure that it conforms to the requirements of the specification to which it was made.

· Product and process release

Recognized reliability criteria are designed into each new product and process from the beginning. Evaluation goes far beyond target specifications and heavy emphasis is placed upon reliability. Before production release, new varistors must successfully complete an extended series of life tests under extreme conditions.

· Monitoring incoming materials

Apart from carrying out physical and chemical checks on incoming raw materials, a very close liaison with materials suppliers is maintained. Incoming inspection and production results are gradually fed back to them, so ensuring that they also maintain the highest quality standards.

In-line control

The manufacturing centre operates in accordance with the requirements of CECC 42 000 and IEC 40 (Secretariat) 538. Each operator is actively engaged in quality checking. In addition, in-line inspectors make daily spot checks on process and product quality, the results of which are fed into the production process.

Final inspection and test (100%)

At the end of production, each varistor is inspected and tested prior to packing.

· Lot testing

Before any lot is released, it undergoes a series of special lot tests under the supervision of the Quality Department.

· Periodic sample testing

Component samples are periodically sent to the Quality Laboratory for rigorous climatic and endurance tests to CECC requirements. Data from these tests provide a valuable means of exposing long term trends that might otherwise pass unnoticed. The results of these tests are further used to improve the production process.

· Field information

The most accurate method of assessing quality is monitoring performance of the devices in the field. Customer feedback is actively encouraged and the information is used to study how the components may be further improved. This close relationship with customers is based on mutual trust built up over many years of co-operation.

DEFINITIONS

Maximum continuous voltage

The maximum voltage which may be applied continuously between the terminals of the component. For all types of AC voltages, the voltage level determination is given by the crest voltage x 0.707.

Voltage at 1 mA, or varistor voltage

The voltage across a varistor when a current of 1 mA is passed through the component. The measurement shall be made in as short a time as possible to avoid heat perturbation.

The varistor voltage is essentially a point on the V-I characteristic permitting easy comparison between models and types.

Maximum clamping voltage

The maximum voltage between two terminals when a standard impulse current of rise time 8 µs and decreasing time 20 µs (8/20 µs) is applied through the varistor (in accordance with IEC 60-2, section 6).

The specified current for this measurement is the class current.

Maximum non repetitive surge current

The maximum peak current allowable through the varistor is dependent on pulse shape, duty cycle and number of pulses. In order to characterize the ability of the varistor to withstand impulse currents, it is generally allowed to warrant a 'maximum non repetitive surge current'. This is given for one pulse characterized by the shape of the impulse current of 8/20 μ s following IEC 60-2, with such an amplitude that the varistor voltage measured at 1 mA changes by \pm 10% maximum.

If more than one impulse is applied when the impulse is of a longer duration, derating curves are applied (see relevant information in the data sheet); these curves guarantee a maximum varistor voltage change of \pm 10% by 1 mA measurement.

Maximum energy

During the application of one impulse of current, a certain energy will be dissipated by the varistor. The quantity of dissipated energy is a function of:

- the amplitude of the current
- the voltage corresponding to the peak current
- the rise time of the impulse
- the decrease time of the impulse; most of the energy is dissipated during the time corresponding to between 100% and 50% of the peak current
- the non-linearity of the varistor.

In order to calculate the energy dissipated during a pulse, reference is generally made to a standardized wave of current. The wave prescribed by IEC 60-2 section 6 has a shape which increases from zero to a peak value in a short time, and thereafter decreases to zero either at an approximate exponential rate, or in the manner of a heavily damped sinusoidal curve. This curve is defined by the virtual lead time (t_1) and the virtual time to half value (t_2) as shown in Fig.3.

VARISTORS INTRODUCTION

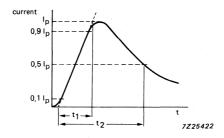


Fig.3 Maximum energy curve.

The calculation of energy during application of such a pulse is given by the formula

$$E = V_p I_p \left(\frac{t_1}{\beta + 2} + \frac{t_2 - t_1}{(\beta + 1) \ln 2} \right)$$

Where:

lp = peak current

V_D = voltage at peak current

 β = given for $l_p = \sqrt{2} \text{ to } l_p$

It can be ascertained that the low value of β , corresponds to the low value of dissipated energy for a given peak current and wave shape.

The published maximum energy does not then represent the quality of the varistor, but can be a valuable indication to compare the different series of components having the same varistor voltage. The published maximum energy is valid for a standard impulse of duration 10/1000 μ s giving a maximum varistor voltage change of \pm 10% at 1 mA.

When more than one pulse is applied, the duty cycle must be so that the rated average dissipation is not exceeded. Values of the rated dissipations are:

0.1 W for series 592

0.25 W for series 593

0.4 W for series 594

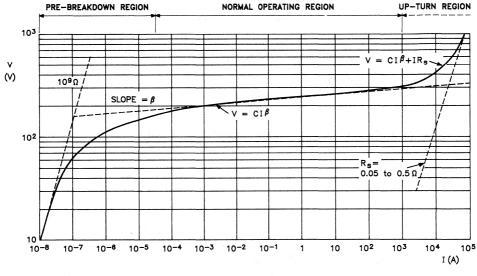
0.6 W for series 595.

ELECTRICAL CHARACTERISTICS

Typical V/I characteristic of a Zn0 varistor

The relationship between voltage and current of a varistor can be approximated to:

$$V = CI^{\beta}$$


Where:

V = voltage

C = varistor voltage at 1 Amp

I = actual working current

 β = tangent of angle curve deviating from the horizontal

MCA299

Pre-breakdown region: V = 10.I approximately; highly temperature dependent

Normal operating region: $V = C \cdot I^{\beta}$

Upturn region: $V = C \cdot I^{\beta} + IR_{s}$

Fig. 4 Typical V/I curve.

Example:

C = 230 V at 1 A

 $\beta = 0.035 (Zn0)$

I = 0.001 or 100 A

 $V = CI^{\beta}$;

for current of 0.001 A; $V = 230.(10^{-3})^{0.035} = 180 \text{ V}$

for current of 100 A; $V = 230.(10^2)^{0.035} = 270 \text{ V}$

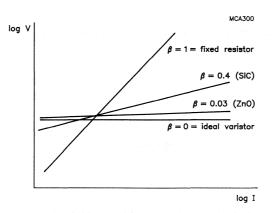


Fig. 5 Varistor characteristics using different β values.

Specification of a varistor curve

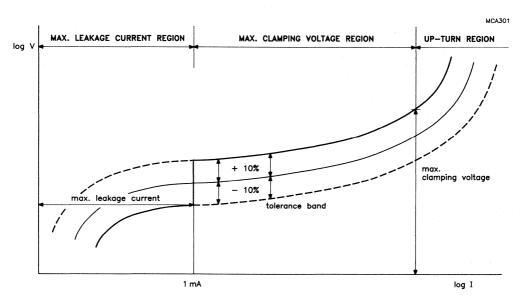


Fig.6 Working points on a varistor curve.

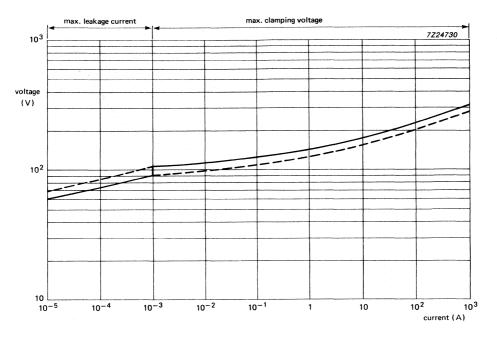


Fig.7 Curve for varistor type 2322 593 .6006

Figure 7 shows the various working points on the varistor curve using the series 2322 593 60 V type as an example, the values being as follows:

60 V

Maximum RMS voltage: $85 \text{ V} = 60.\sqrt{2}$ Maximum DC working voltage: 100 V ± 10 %

Varistor voltage:

Maximum clamping voltage at 10 A: 165 V Maximum non repetitive current: 1200 A

10⁻⁵ A to 5.10⁻⁴ Leakage current at 85 V DC: Transient energy: 10/1000 μs: 5.4 J

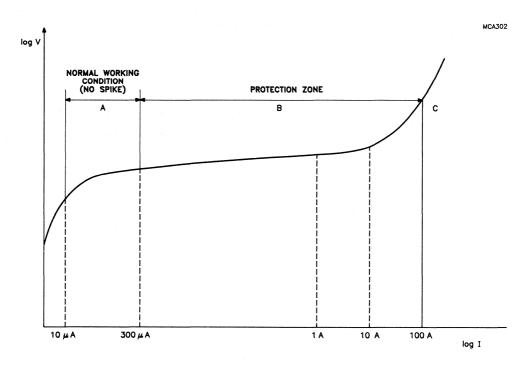


Fig.8 Definitions of the varistor curve.

The points shown on the curve in Fig. 8 are defined as follows:

- A: Normal working zone current is kept as low as possible in order to have low dissipation during continuous operation (between 10 300 μA)
- B: **Maximum clamping voltage** the maximum voltage for a given (class) current (peak current based upon statistical probability determined by standardization authorities)
- C: Maximum withstanding surge current the maximum peak current that the varistor can withstand (only) once in its ifetime.

TRANSIENT VOLTAGE LIMITATION WITH ZNO VARISTORS

Principles of voltage limitation

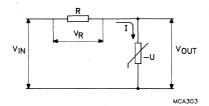


Fig.9 Voltage limitation using a varistor.

In Fig. 9, the supply voltage $V_{\rm IN}$ is derived by the resistance R (e.g. the line resistance) and the Varistor (-U) selected for the application.

$$V_{IN} = V_R + V_{OUT}$$
$$V_{IN} = R_I + CI^{\beta}$$

If the supply voltage varies by an amount of V_{IN} the current variation is I and the supply voltage may be expressed as:

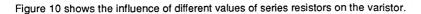
$$(V_{IN} + \Delta V_{IN}) = R(I + \Delta I) + C(I + \Delta I)^{\beta}$$

Given the very small value of β (0.03 to 0.05), it is evident that the modification of CI^{β} will be very small compared to the variation of RI when V_{IN} is increased to V_{IN} + Δ V_{IN}. A large increase of V_{IN} will induce a large increase of V_R and a small increase of V_{OUT}.

Example:

If the varistor is a typical component of the series 2322 592 52716 (C = 520, β = 0.04) and if R = 250 Ω .

for $V_{IN} = 315 \text{ V}$ (crest voltage of the 220 V supply voltage);


$$I = 10^{-5} \text{ A}, V_{R} = 2.5 \text{ x } 10^{-3} \text{ V}, \text{ and } V_{OUT} = 315 \text{ V}.$$

for
$$V_{IN} = 500 \text{ V}$$
;

$$I = 10^{-1}$$
 A, $V_R = 25$ V, and $V_{OUT} = 475$ V.

for
$$V_{IN} = 1000 \text{ V}$$
;

$$I = 1.88 \text{ A}, V_R = 470 \text{ V}, \text{ and } V_{OUT} = 530 \text{ V}.$$

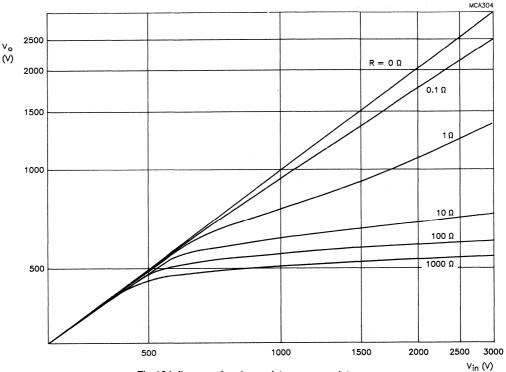


Fig.10 Influence of series resistance on varistor.

By drawing the load line, it is also possible to estimate the variation of the voltages V_R and V_{OUT} when V_{IN} is increased to 500 V or 1000 V. This effect is shown in Figs 11 and 12 respectively.

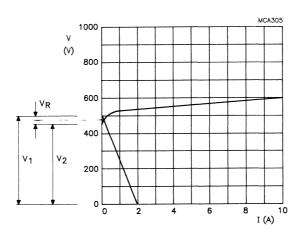


Fig.11 Influence on varistor when V_{IN} is 500 V (R = 250 Ω).

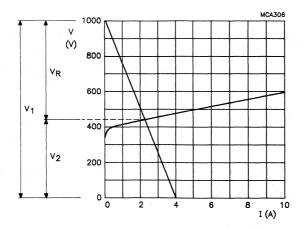


Fig.12 Influence on varistor when V_{IN} is 1000 V (R = 250 Ω).

Equivalent circuit model

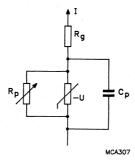


Fig.13 Equivalent circuit model.

A simple equivalent circuit representing a metal oxide varistor as a capacitance in parallel with a voltage dependent resistor is shown in Fig. 13. Cp and Rp are the capacitance and resistance of the intergranular layer respectively; Rg is the Zn0 grain resistance. For low values of applied voltages, Rp behaves as an ohmic loss.

VARISTORS INTRODUCTION

Capacitance

Depending on area and thickness of the device, the capacitance of the varistors increases with the diameter of the disc, and decreases with its thickness.

In DC circuits, the capacitance of the varistors remains approximately constant provided the applied voltage does not rise to the conduction zone, and drops abruptly near the rated maximum continuous DC voltage.

In AC circuits, the capacitance can affect the parallel resistance in the leakage region of the V-I characteristic. The relationship is approximately linear with the frequency and the resulting parallel resistance can be calculated from 1/ ω C as for a usual capacitor.

Nevertheless, due to the structural characteristics of the zinc oxide varistors, the capacitance itself decreases slightly with an increase in frequency. This phenomenon is emphasized when the frequency reaches approximately 100 kHz. Figure 14 shows the effect of HF alternating current on the varistor.

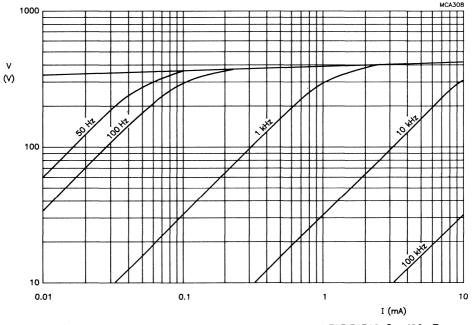
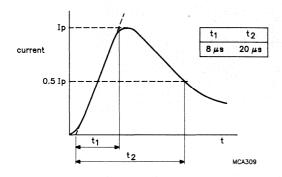


Fig.14 Effect of HF alternating current on varistor, type 2322 595 52516, C = 480 pF.

Energy handling

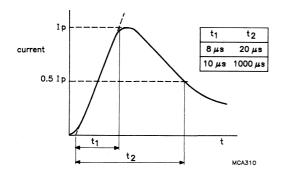

Maximum allowable peak current and maximum allowable energy are standardized using defined pulses.

• peak current (amperes); 8/20 μs - 1 pulse

• energy (joules); 10/1000 μs - 1 pulse

Surge life rating - curves (number of surges allowed as a function of pulsetime and maximum current).

Internationally accepted test pulses


Max. allowable peak current (one time only)

Examples

593 52516 (250V) = 1200 A 593 53006 (30V) = 250 A 595 52516 (250V) = 4500 A 595 53006 (30V) = 1000 A

Fig.15 Standard impulse current following IEC publication 60-2, paragraph 16.1.

Pulse life time rating of 593 60V-type

Energie capability : E = K.V_n.I_nt₂

1 pulse 8/20 μ s: 1200 A = 1 x 8 J 10 pulses 8/20 μ s: 300 A = 10 x 1.45 J 1 pulse 10/1000 μ s: 33 A = 1 x 5.4 J 10 pulses 10/1000 μ s: 11 A = 10 x 2.5 J

After test: ($\Delta V/V$) 1 mA \leq 10%

 I_p = pulse current V_p = corresponding clamping voltage

Fig.16 Examples of energy capabilities for different levels of current amplitude or impulse duration.

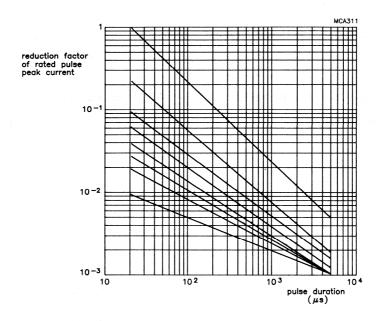


Fig.17 Maximum peak current for various number of pulses as a function of pulse duration.

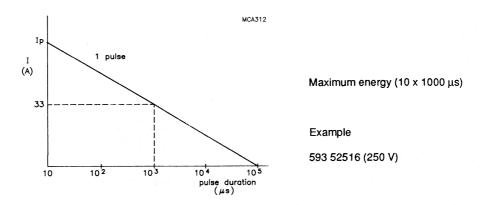
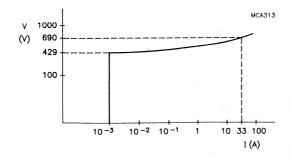



Fig. 18 Example of selection of the maximum peak current as a function of pulse duration.

E = K x Vp x lp x
$$t_2$$

= 1.4 x 700 x 33 x 10^{-3} = 32 joules

Fig. 19 Example of calculation of energy for a 2322 593 52516 type, 1 impulse at the maximum peak current (33A) for a duration $t_a = 1000 \mu s$ (k = 1.4).

DISSIPATED POWER

DC dissipation

The power dissipated in a varistor is equal to the product of the voltage and current, and may be written:

$$W = I. V = CI^{\beta+1}$$
 or $KV^{\alpha+1}$

When the coefficient α = 30 (β = 0.033), the power dissipated by the varistor is proportional to the 31st power of the voltage. A voltage increase of only 2.26% will, in this case, double the dissipated power. Consequently, it is very important that the applied voltage does not rise above a certain maximum value, otherwise the permissible rating will be exceeded.

This is even more cogent as the varistors have a negative temperature coefficient, which means that at higher dissipation (and accordingly at a higher temperature) the resistance value will decrease and the dissipated power will increase even more.

AC dissipation

When a sinusoidal alternating voltage is applied to a varistor, the dissipation cannot be calculated from the same formula as in a DC application. The calculation requires an integration of the V.I product.

The instantaneous dissipated power is given by:

$$P_{INST} = V.I = V(K.V^{\alpha}) = K.V^{\alpha+1}$$

In the above equation, the value $V = V_{PEAK}$.sin ωt .

VARISTORS INTRODUCTION

During a half cycle, the dissipated power is then given by:

$$P_{\text{RMS}} = \frac{1}{\pi} \int_{0}^{\pi} K. V_{\text{PEAK}}^{\alpha+1} (\sin \omega t)^{\alpha+1}. dt$$

Since $V_{PEAK} = V_{RMS} \times \sqrt{2}$

$$P_{\text{RMS}} = \pi \cdot \text{K.V}_{\text{RMS}}^{\alpha+1} \cdot (\sqrt{2})^{\alpha+1} \int_{0}^{\pi} (\sin \omega t)^{\alpha+1} \cdot dt$$

This integration is not easy to solve because of the exponent α + 1 of sin ωt .

It is generally easier to use the quotient of the AC power on the DC power:

$$P = P_{AC}/P_{DC}$$

This quotient depends only from the value of α and not more of the K value as shown in the formula:

$$\mathsf{P} = \frac{\frac{1}{\pi} \cdot \mathsf{K.V_{RMS}}^{\alpha+1} \cdot 2^{(\alpha+1)/2} \int_{0}^{\pi} \left(\sin \omega t \right)^{\alpha+1} \cdot dt}{\mathsf{KV}^{\alpha+1}}$$

$$P = \frac{1}{\pi} . 2^{(\alpha+1)/2} \int_{0}^{\pi} (\sin \omega t)^{\alpha+1} . dt$$

P has been calculated by successive application of a reduction formula, and is tabulated below:

Table 1 Power ratios

α	P	α	Р	α	Р	α	Р	α	Р
1 2 3 4 5 6 7	1.00	11	14.4	21	344	31	9.135	41	255.646
	1.20	12	19.6	22	477	32	12.776	42	358.778
	1.50	13	26.8	23	658	33	17.734	43	499.673
	1.92	14	36.7	24	915	34	24.822	44	701.611
	2.50	15	50.3	25	1264	35	34.482	45	977.622
	3.29	16	69.0	26	1763	36	48.301	46	1373.365
7	4.375	17	95.0	27	2439	37	67.149	47	1914.510
8	5.85	18	131	28	3404	38	94.126	48	2690.675
9	7.875	19	180	29	4715	39	130.941	49	3752.439
10	10.64	20	249	30	6587	40	183.660	50	5275.834

Temperature coefficient

In the 'leakage current' region of the V/I characteristic, the normal equation $V=C\,I^\beta$ of the varistor becomes less applicable.

This is due to a parallel resistance which shows a very important temperature coefficient, created by thermal conduction. This temperature coefficient decreases when the current density increases. Then, the temperature coefficient at 1 mA is higher for a large varistor than for a small varistor.

This phenomena induces an increase in leakage current when the varistor is used at high temperature. The relationship between the temperature can be expressed by:

$$I = I_0.e^{KT}$$

where:

In is the limiting current at 0 ° Kelvin

K is a constant including the band gap energy of the zinc oxide and the Boltzmann's constant.

Practically, the maximum temperature coefficient is guaranteed on the voltage for a current of 1 mA, in % by K.

VARISTORS INTRODUCTION

SURGE PROTECTION

Varistors provide protection against surges which may be generated in the following ways:

Electromagnetic energy

Atmospheric

lightning

Switching of inductive loads

relays pumps actuators spot welders thermostats fluorescent chokes discharge lamps motors

transformers air conditioning units

fuses.

Electrostatic discharges

For example, discharges caused by synthetic carpets (approximately 50 kV).

Source of transient

The energy dissipated by switching of an inductive load is completely transferred in the capacitance of the coil which is generally very low.

$$E = 1/2 (LI^2) = 1/2 (CV^2)$$

Examples, using the following values

Mains voltage = 220 V RMS (allowable peak voltage = 340 V) Line inductance = 20 μ H (2.10-5 H) Line capacitance = 1 μ F (10-6 F) Line resistance = 0.34 Ω

1. In the event of a short circuit:

Load current $\rm I_L = V/R = 340~V/0.34~\Omega = 1000~A$

Energy stored E = 1/2 (2 x 10^{-5}) . 10^6 = 10 Joules (W.s)

2. In the event of a fuse going open circuit:

The energy goes from inductance L towards line capacitance

$$V_C = \sqrt{2E/C} = 2 \times 10/10^{-6} = 20 \times 10^6 = 4472 \text{ V}$$

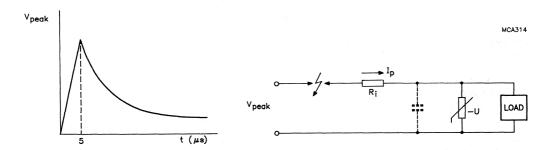


Fig.20 Source of transient.

The line impedance becomes high when the fuse goes open circuit (resistance against high voltage peak in a very short time).

$$R_i = 1/\omega C = 1/2 (\pi f C)$$

Since the rise time of the pulse is 5 μs , the frequency f = 0.2 MHz.

$$R_{_{1}} = 1/6.28 \times 0.2 \cdot 10^{-8} \times 10^{-8} = 80 \Omega$$

$$I_{p} = 48 \text{ A}$$

$$V_{RI} = 80 \times 48 = 3820 \text{ V}$$

$$V_{VDR} = 652 \text{ V} = V_{LOAD}$$

VARISTOR APPLICATIONS

Varistors may be used in many applications, including:

- · computers
- timers
- · amplifiers
- · oscilloscopes
- · medical analysis equipment
- street lightning
- tuners
- · televisions
- · controllers
- · industrial power plant
- · telecommunications
- automotive
- · gas and petrol appliances
- · electronic home appliances
- · relays
- · broadcasting
- · traffic facilities
- · electromagnetic valves
- · railway distribution/vehicles
- · agriculture
- power supplies
- · line ground (earth protection)
- · microwave ovens
- toys, etc.

Application examples

1. For suppression of mains-borne transients in domestic appliances and industrial equipment.

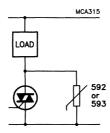


Fig. 21 Suppression via load.

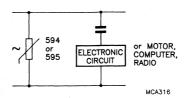


Fig. 22 Suppression directly across mains.

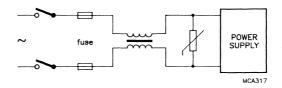


Fig. 23 Switched-mode power supply protection.

VARISTORS INTRODUCTION

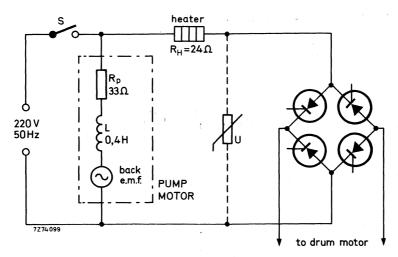


Fig. 24 Protection of a thyristor bridge in a washing machine.

Behaviour of the circuit without varistor protection

The measured peak current through the pump motor when S is closed is 1 A. The energy expended in establishing the electromagnetic field in the inductance of the motor is therefore:

$$I^2L/2 = 0.4/2 = 200 \text{ mJ}.$$

Without varistor protection, an initial current of 1 A will flow through the thyristor bridge when S is opened, and a voltage sufficient to damage or destroy the thyristors will be developed. Arcing will occur across the opening contacts of the switch.

Behaviour of the circuit with varistor 2322 593 52516 inserted

On opening switch S, the peak voltage developed across the varistor is:

$$V = C_{\text{MAX}}^{} I^{\beta} = 600 \, V$$

The thyristors in the bridge can withstand this voltage without damage.

The total energy returned to the circuit is 200 mJ. Of this 200 mJ, 15.1 mJ is dissipated in the heater, and 184.3 mJ is dissipated in the varistor. The varistor can withstand more than 10⁵ transients containing this amount of energy.

2. For suppression of internally generated spikes in electronic circuits.

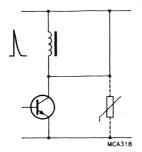


Fig. 25 Varistor used across a transistor or coil in a television circuit.

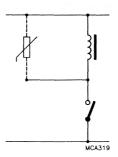


Fig. 26 Varistor used across a switch or coil.

In both examples shown above, type 2322 592 should be used for up to approximately 200 A, and type 2322 593 should be used up to approximately 500 A.

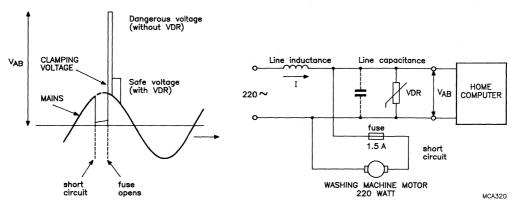
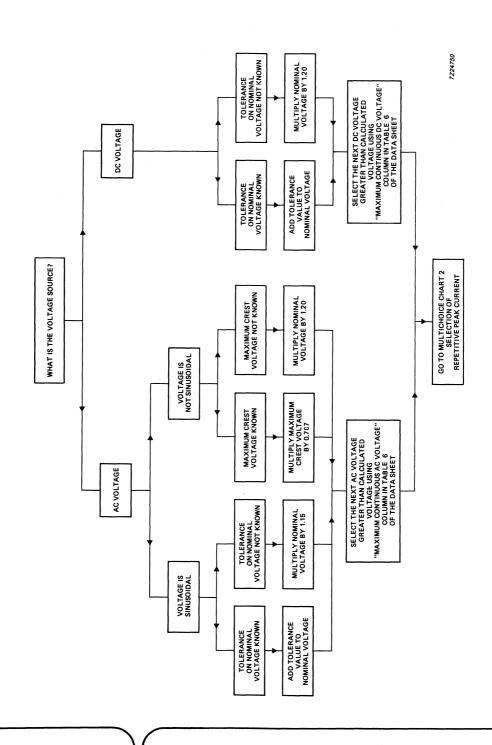
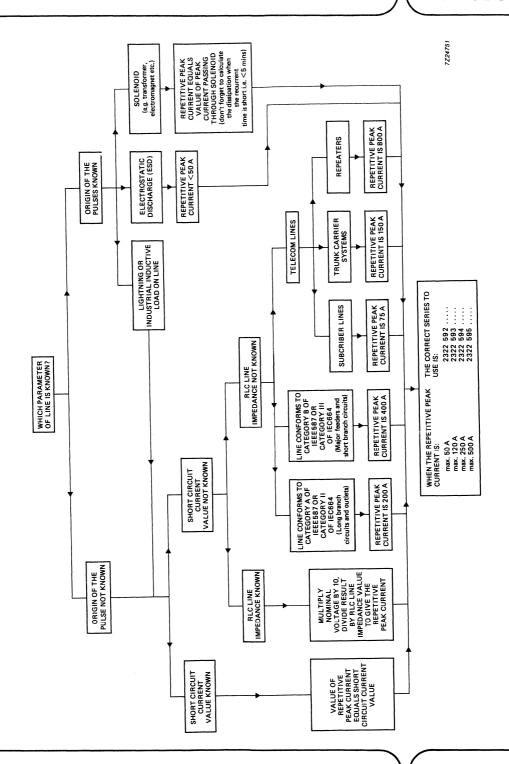


Fig. 27 Influence of a transient on the mains voltage.


SELECTION OF THE CORRECT VARISTOR TYPE


In order to select a Zn0 varistor for a specific application, the following points must first be considered:

- 1. The normal operating conditions of the apparatus or system
- AC voltage?
- DC voltage ?
- 2. What is the maximum RMS or DC voltage?

To ensure correct selection of varistor type, two multichoice selection charts have been prepared:

Chart 1 determines the necessary steady state voltage rating (i.e. working voltage), and chart 2 determines the correct size (i.e. correct energy absorption). These charts can be found on the following pages.

VARISTORS zinc oxide disc, epoxy coated

QUICK REFERENCE DATA

Maximum AC voltage (RMS)	14 to 550 V
Maximum DC voltage	18 to 745 V
Maximum non-repetitive transient current (8/20 μ s)	100 to 4500 A
Climatic category	40/125/56
Specification	based on CECC 42 000
Packaging 2322 592 and 2322 593	on tape on reel
2322 594 and 2322 595	on tape in 'ammopack' and in bulk on tape on reel and in bulk

APPLICATION

Suppression of transients to increase contact life and improve electronic equipment reliability.

DESCRIPTION

The varistors consist of a disc of low- β ceramic material with two tinned solid copper wires. They are coated with layers of ochre-coloured epoxy, which provides electrical, mechanical and climatic protection. The encapsulation is resistant to all cleaning solvents in accordance with IEC 68-2-45. Three types of lead configuration are available:

- straight leads
- straight leads with flange (592, 593 series only)
- kinked leads (592, 593 series only)

MECHANICAL DATA

Outlines

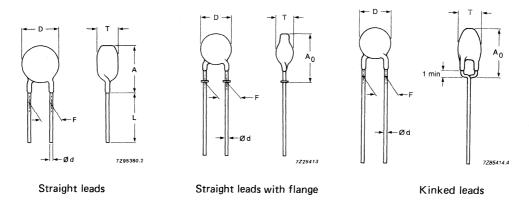


Fig.1 Survey of component outlines; see Table 1 for details.

MECHANICAL DATA (continued)

Table 1 Component dimensions

catalogue number	D max. mm	A max. mm	A _O max. mm	L min. mm	d ± 10% mm	F mm	T
2322 592	7	9	11	20	0.6	5 + 0.8/-0.2	see Table 6
2322 593	9	11	13	19	0.6	5 + 0.8/-0.2	see Table 6
2322 594	13.5	15.5		17	0.8	7.62 ± 1	see Table 6
2322 595	17	19		16	0.8	7.62 ± 1	see Table 6

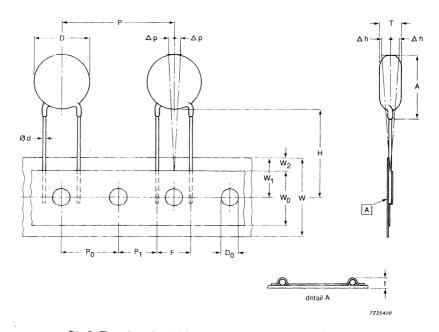


Fig.2 Taped version with straight leads; see Table 2 for details.

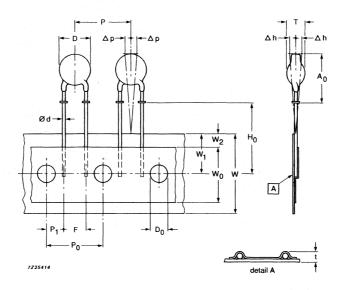


Fig.3 Taped version with flanged leads; see Table 2 for details.

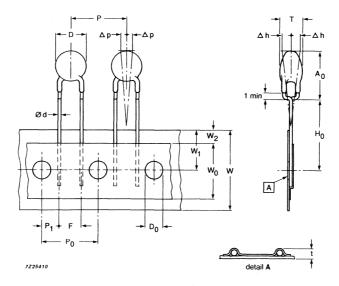


Fig.4 Taped version with kinked leads; see Table 2 for details.

Table 2 Taping data (based on IEC 286-2)

parameter	symbol	nominal dimensions mm	tolerance	remarks
body diameter	D	see Table 1		
total thickness	T	see Table 6		
mounting height	A ₀ – A	, -		
lead wire diameter	d	see Table 1		
lead to lead distance	F.	see Table 1		guaranteed between component and tape
component pitch	P	12.7/25.4 mm	± 1 mm	
feed hole pitch	P ₀	12.7	± 0.3	cumulative pitch error = ± 1 mm/20 pitches
feed hole centre to lead centre	P ₁	3.81/8.89	± 0.7	guaranteed between component and tape
component alignment	ΔΡ	0	± 1.3	
component alignment	Δ h	0	± 2.0	
tape width	W	18	+ 1/-0.5	
hold down tape width	Wo	12.5 min.		
hole position	W ₁	9	± 0.5	
hold down tape position	W ₂	3 max.		and the second second
height between component	_			
and tape centre	Н	20	+ 2/-0	straight lead versions
lead wire clinch height	H ₀	16/18.25	± 0.5	flanged and kinked lead versions
feed hole diameter	D ₀	4	± 0.2	-
total tape thickness	t	0.9 max.		cardboard tape 0.5 ± 0.1
AQL - mechanical level II			± 1%	

MECHANICAL DATA (continued)

Mounting

The varistors are suitable for processing on automatic insertion, and cutting and bending equipment.

Versions with flanged leads provide better positioning on the PCB and more accurate control over component height. This is important for hand mounting and automatic insertion techniques (see Fig.5).

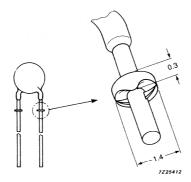


Fig.5 Varistor with flanged lead.

Soldering

Solderability 240 °C max., duration 4 s max.

Resistance to heat 265 °C max., duration 11 s max.

Impact

Free fall 1 m

Robustness of terminations

Tensile strength 10 N

Inflammability

The varistors are non-flammable

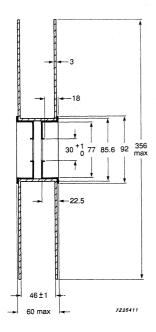
Marking

The varistors are marked with the following information:

- maximum continuous RMS voltage
- series number (i.e. 592, 593, 594 or 595)
- manufacturer's logo
- · date of manufacture

ORDERING INFORMATION

Packaging


The varistors are available in a number of packing options:

- on tape on reel
- on tape in 'ammopack'
- bulk packing

The basic ordering code for each option is given in Tables 3 to 5 inclusive. To complete the catalogue number consult Table 6, Electrical Data, to determine the required operating parameters.

Table 3 Varistors available on tape on reel

	2322 592 (ø 7 mm) 14 - 460 V	2322 593 (φ 10 mm) 14 - 460 V	2322 594 (φ 13.5 mm) 14 - 550 V	2322 595 (φ 17 mm) 14 - 550 V
packing quantity	1500	1500	750	750
straight leads; H = 20 (see Fig.2)	06	06	06	06
straight leads with flange; H _O = 16 (see Fig.3)	16	16		
straight leads with flange; H ₀ = 18.25 (see Fig.3)	26	26		
kinked leads; H _O = 18.25 (see Fig.4)	36	36		
kinked leads; H ₀ = 16 (see Fig.4)	86	86		

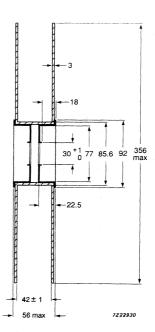


Fig.6 Dimensions of reels.

Table 4 Varistors available on tape in 'ammopack'

	2322 592 (φ 7 mm) 14 - 460 V	2322 593 (¢ 10 mm) 14 - 460 V
packing quantity	1500/2000	1500/2000
straight leads; H = 20 (see Fig.2)	07	07
straight leads with flange; $H_0 = 16$ (see Fig.3)	17	17
straight leads with flange; H _O = 18.25 (see Fig.3)	27	27
kinked leads; H ₀ = 18.25 (see Fig.4)	37	37
kinked leads; H ₀ = 16 (see Fig.4)	87	87

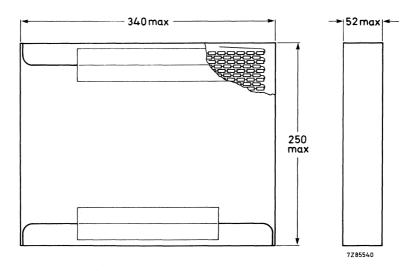


Fig.7 Dimensions of 'ammopack'.

Table 5 Varistors available in bulk

	2322 592 (φ 7 mm) 14 - 460 V	2322 593 (φ 10 mm) 14 - 460 V	2322 594 (φ 13.5 mm) 14 - 550 V	2322 595 (φ 17 mm) 14 - 550 V
packing quantity	250	250	250	100/250
straight leads; (see Fig.1)	56	56	56	56
straight leads with flange; (see Fig.1)	76	76		
kinked leads; (see Fig.1)	66	66		

ELECTRICAL DATA

Climatic category		40/125/56
Maximum continu	uous voltage	
RMS		14 to 550 V
DC		18 to 745 V
Maximum withsta	anding surge current (8 x 20 μs)	
2322 592		100 or 400 A
2322 593	•	250 or 1200 A
2322 594	•	500 or 2500 A
2322 595	•	1000 or 4500 A
Temperature coef	ficient of voltage at 1 mA max.	-0.065 %/K
Insulation voltage		2500 V

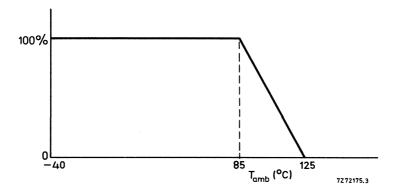


Fig.8 Derating curve.

Table 6 Electrical parameters

Γ	Ε×			-								-										П								
	maximum thickness	m)			ŝ								-																	
-	ma thi	T (mm)	4.	4.6	4.	4.7	4.5	4.7	4.8	4.8	4.5	4.9	5.0	5.0	4.5	4.9	5.	5.1	4.1	4.	4.4	4.4	4.1	4.1	4.4	4.4	4.	4.	4.4	
	typical capacitance at 1 kHz	рF	1300	2800	0009	15000	1050	2000	4000	10000	006	1500	3000	7500	200	1350	2600	6500	700	1600	2700	0009	260	1300	2200	4800	460	1000	1800	2000
	maximum non-repetitive surge current (8 x 20 us)	A	100	250	200	1000	100	250	200	1000	100	250	200	1000	100	250	200	1000	100	250	200	1000	100	250	200	1000	100	250	200	1000
	maximum energy (10 × 1000 μs) (note 4)	ſ	0.5	1.7	4.3	5.4	0.7	2.0	5.3	6.9	0.8	2.5	6.5	8.8		3.0		9.4		3.6		12	4.1		-	14	1.6	5.2	13	
	maximum voltage at stated current $(8 \times 20 \mu s)$ (note 3)	A	*	2.5		10		2.5		10		2.5		10		2.5				2.5		10		2.5		10		2.5		
	maximum voltag stated current (8 × 20 μs) (note	>	48	43	43	43	09	53	53	53	73	65	65	65	98	77	77	77	96	93	93	90	123	115	110	105	145	135	130	120
	voltage at 1 mA (note 2)	V (max.)	24				30				36				43				52				62				75			
	voltage (note 2)	V (min.)	20				24				30		W chiquide in		35				42				20		*******		61			
	ontinuous	V (DC)	18				22				26				31				38				45				26			
	maximum continuous voltage	V (RMS) (note 1)	14				17				20				25				30				35				40			
	catalogue number 2322		592 . 140 6	593 . 140 6	594 . 140 6	595 . 140 6		593 . 170 6	594 . 170 6	595 . 170 6	592 . 200 6	593 . 200 6	594 . 200 6	595 . 200 6	592 . 250 6	593 . 250 6	594 . 250 6	595 . 250 6	and the second second	593 . 300 6	594 . 300 6	595 . 300 6	Naffradisc Association	593 . 350 6	594 . 350 6	595 . 350 6	592 . 400 6	593 . 400 6	594 . 400 6	700 AOO A

Replace last digit of catalogue number with a '7' for ordering on tape in ammopack (592, 593 series only).

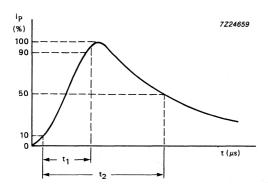
	maximum thickness		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	4.1	4.1	4.4	4.4	4.1	4.1	4.4	4.4	4.1	4.1	4.4	4.4	4.1	4.1	4.4	4.4	4.1	4.1	4.6	4.6	4.4	4.4	4.8	4.8	4.4	4.4	4.8	
	typical capacitance at 1 kHz	pF	0.00	3/0	006	1500	3100	290	200	1200	2300	240	530	1000	1900	180	450	800	1500	130	320	580	1050	120	290	540	950	110	270	490	010
	maximum non-repetitive surge current	(5 × 50 µs) A	400	400	1200	2500	4500	400	1200	2500	4500	400	1200	2500	4500	400	1200	2500	4500	400	1200	2500	4500	400	1200	2500	4500	400	1200	2500	7100
	maximum energy (10 x 1000 µs) (note 4)			5.6	7.0	12	21	2.9	8.3	15	24	3.4	10	18	29	4.1	13	22	37	5.5	17	30	56	6.3	21	33	57	7.1	20	36	
		A	1			22				25		2	0	22	20	2	2	25	20	5	10		20	5		25		വ	0		
	maximum voltage at stated current $(8 \times 20 \mu s)$ (note 3)	^	1,1,1	145	140	140	140	165	165	165	165	190	200	200	200	230	250	250	250	310	340	340	340	350	370	370	370	395	400	400	
	at 1 mA	\ \	(Illax.)	06	-			110				132				165				225				242		-		264	-		
-	voltage at 1 mA (note 2)	\ \ \	, , , , , , , , , , , , , , , , , , ,	74				06				108				135				185				192				216			-
	ontinuous	V (DC)	L	65				85				100				125	-			170				180				200			
	maximum continuous voltage	V (RMS)	(note 1)	20		-		09				75				95				130				140			9	150			
	catalogue number 2322 followed by			592 . 500 6	593 . 500 6	594 . 500 6	595 . 500 6	592 . 600 6 *	593 . 600 6 *	594 . 600 6 *	* 9 009 . 365	592 . 750 6 *	593.7506 *	594 . 750 6 *	* 902 . 750 6	592 . 950 6 *	593.9506 *	594.9506 *	* 9 026 . 369	131	•	. 131	. 131	592 . 141 6			595 . 141 6	592 . 151 6 *	151	151	1

Replace last digit of catalogue number with a '7' for ordering on tape in ammopack (592, 593 series only). *CECC approved types

																						,							
maximum thickness	T (mm)	4.6	4.6	5.0	5.0	4.9	4.9	5.4	5.4	4.9	4.9	5.4	5.4	4.9	4.9	5.4	5.4	5.3	5.3	5.9	5.9	5.8	5.8	9.9	9.9	5.9	5.9	9.9	9.9
typical capacitance at 1 kHz	ρF	06	230	430	750	70	170	320	540	09	160	300	480	55	140	270	440	50	130	240	400	40	95	180	280	35	85	165	250
maximum non-repetitive surge current	(8 × 20 µs) A	400	1200	2500	4500	400	1200	2500	4500	400	1200	2500	4500	400	1200	2500	4500	400	1200	2500	4500		1200	2500	4500			2500	4500
maximum energy (10 × 1000 μs) (note 4)		7.3	23	41	67	10	30	54	88	11	33	28	96	12	36	63	104	13	40	71	117	18	_	29	110	20	26	73	120
	٧	5 7		25 4		-	10		20 8			25 5		5		25 6	_		10 4		20		10 51		50 1	5 2		25 7	-
maximum voltage at stated current $(8 \times 20 \mu\text{s})$ (note 3)	>	410	455	455	455	560	009	009	009	009	650	650	650	695	710	710	710	750	800	800	800	1000	1025	1025	1025	1100	1120	1120	1120
voltage at 1 mA (note 2)	V (max.)	303				396				429				473				517				682				748			
voltage (note 2)	V (min.)	247				324				351				387				423				558				612			
naximum continuous oltage	V (DC)	225				300				320				350		-		382				505				260			
maximum c voltage	V (RMS) (note 1)	175				230				250				275				300				385				420			
	>	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*					*	*	*	*
catalogue number 2322 followed by		592 . 171 6	. 171	594 . 171 6	. 171	92 . 231 6	93 . 231 6	594 . 231 6	95 . 231 6	251	251	594 . 251 6	251	592 . 271 6	271	94 . 271 6	95 . 271 6	592 . 301 6	93 . 301 6	594 . 301 6	595 . 301 6	592 . 381 6	93 . 381 6	94 . 381 6	95 . 381 6	592 . 421 6	593 . 421 6	594 . 421 6	95 . 421 6
204		5	വ	נט	<u>ت</u>	5		נט	ß	വ		വ	വ	S	2	വ	2	വ	വ	വ	2	2	വ	2	വ	5	വ	- S	2

Replace last digit of catalogue number with a '7' for ordering on tape in ammopack (592, 593 series only). *CECC approved types

Table 6 (continued)


						`	_					
	maximum thickness		<u> </u>	(mm)	0.9	0.9	9.9	9.9	6.9	6.9	7.0	7.0
	typical capacitance	at 1 kHz	占	-	30	75	150	225	135	220	120	180
	maximum typical non-repetitive capacitance	surge current	(8 × 20 µs) A		400	1200	2500	4500	2500	4500	2500	4500
	maximum continuous voltage at 1 mA maximum voltage at maximum energy voltage (10 x 1000 µs)	(note 4)	ſ		21	63	82	135	68	145	86	160
	oltage at nt	(note 3)	∢		2		22			20	25	
	maximum volta stated current	$(8 \times 20 \mu\text{s})$ (note 3) (note 4)	>		1200	1240	1240	1240	1335	1355	1500	1500
	at 1 mA)		>	(max.)	825				902		1001	
	voltage a (note 2)	en, de consequence	>	(min.)	675				738		819	
	ontinuous		v (DC)		615				0/9		745	
	maximum c		V (RMS)	(note 1)	460				510		550	
i able o (continued)	catalogue number 2322				592 . 461 6 *	593 . 461 6 *	594 . 461 6 *	\$95.4616 *	594.5116	595.5116	594.5516	595 . 551 6

Replace last digit of catalogue number with a '7' for ordering on tape in ammopack (592, 593 series only). *CECC approved types

Notes to Table 6

- 1. The sinusoidal voltage is assumed as the normal operating condition. If a non-sinusoidal voltage is present, type selection should be based on multiplying the peak voltage by a factor of 0.707.
- 2. The voltage measured at 1 mA meets the requirements of para. 4.3 of CECC specification 42 000.
- 3. A current wave of 8 x 20 µs (requirement of para. B.2.10.1 of CECC specification 42 000) is used as a standard for impulse current and clamping voltage ratings. The maximum non-repetitive surge current is given for one impulse applied during the life of the component.
- 4. High energy surges are generally of longer duration. The maximum energy for one impulse of 10 x 1000 μs is given as a reference for long duration impulses. This impulse can be characterised by peak current (I_p) and impulse width t₂ (virtual time of half I_p value, following IEC 60-2, Section 6). If V_p is the clamping voltage corresponding to I_p, the energy absorbed in the VDR is determined by the formula:

K is dependent on the value of t_2 when the value of t_1 is between 8 and 10 μ s (see Fig.9).

t ₂ (μs)	Κ
20	1
50	1.2
100	1.3
1000	1.4

Fig.9 Peak current (Ip) as a function of impulse width (t2).

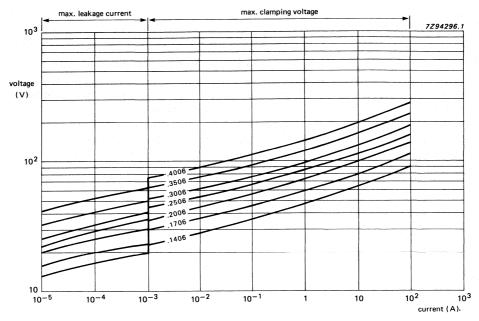


Fig.10 V/I characteristics, 14/40 V; 2322 592 series.

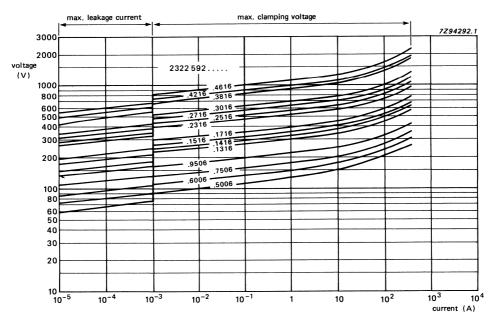


Fig.11 V/I characteristics, 50/460 V; 2322 592 series.

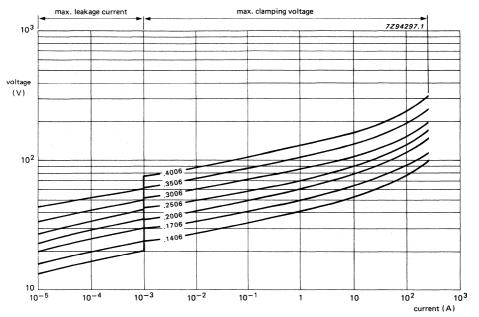


Fig.12 V/I characteristics, 14/40 V; 2322 593 series.

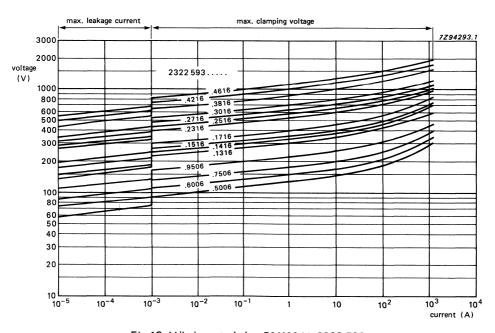


Fig.13 V/I characteristics, 50/460 V; 2322 593 series.

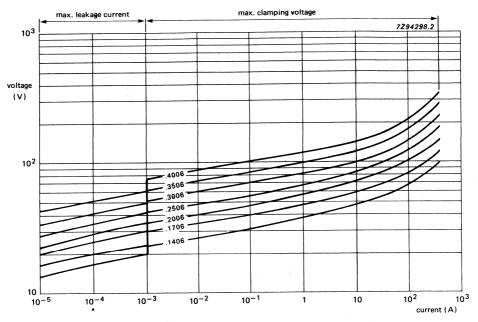


Fig.14 V/I characteristics, 14/40 V; 2322 594 series.

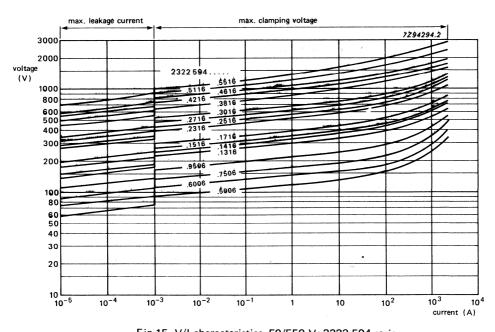


Fig.15 V/I characteristics, 50/550 V; 2322 594 series.

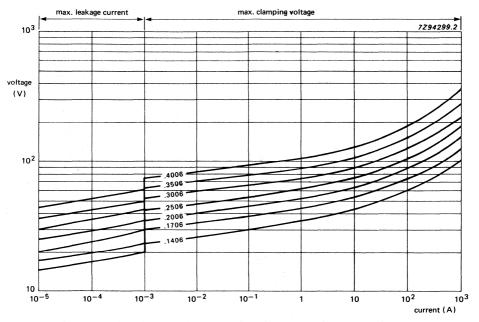


Fig.16 V/I characteristics, 14/40 V; 2322 595 series.

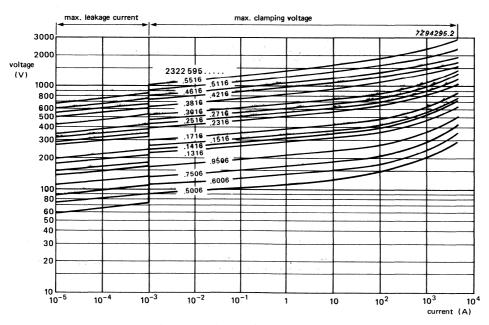


Fig.17 V/I characteristics, 50/550 V; 2322 595 series.

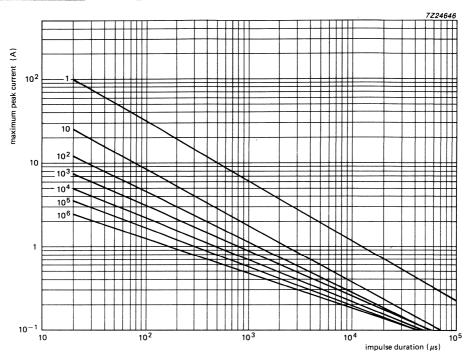


Fig. 18 Maximum applicable transient current as a function of impulse duration, 14/40 V; 2322 592 series.

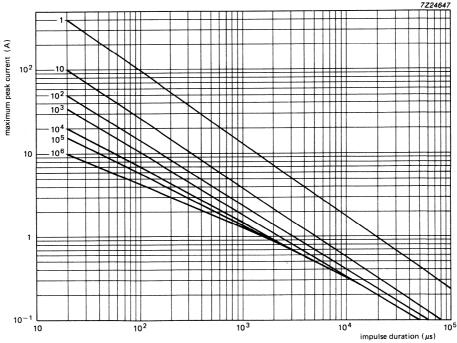


Fig. 19 Maximum applicable transient current as a function of impulse duration, 50/460 V; 2322 592 series.

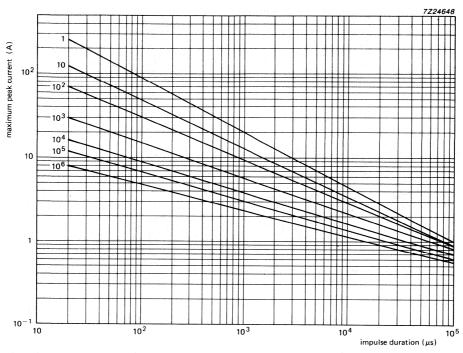


Fig.20 Maximum applicable transient current as a function of impulse duration, 14/40 V; 2322 593 series.

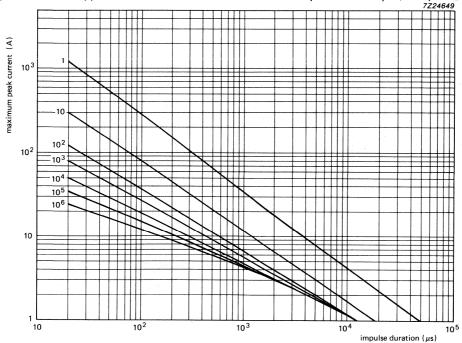


Fig.21 Maximum applicable transient current as a function of impulse duration, 50/460 V; 2322 593 series.

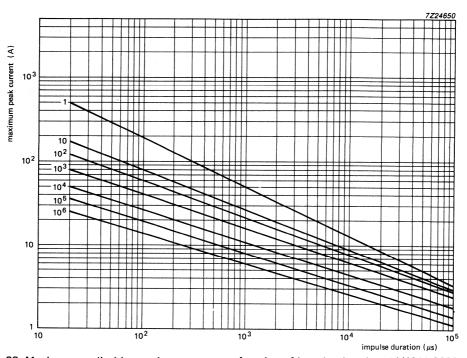


Fig.22 Maximum applicable transient current as a function of impulse duration, 14/40 V; 2322 594 series.

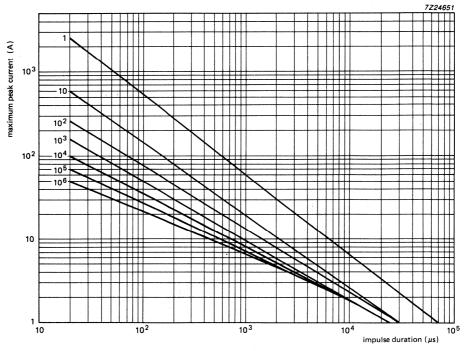


Fig.23 Maximum applicable transient current as a function of impulse duration, 50/300 V; 2322 594 series.

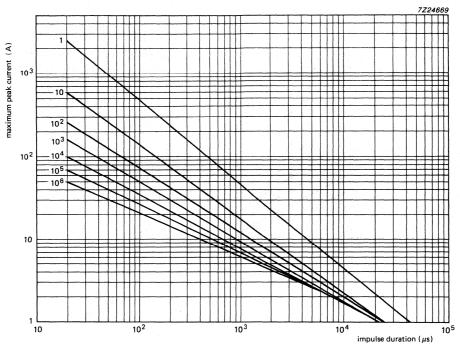


Fig.24 Maximum applicable transient current as a function of impulse duration, 385/550 V; 2322 594 series.

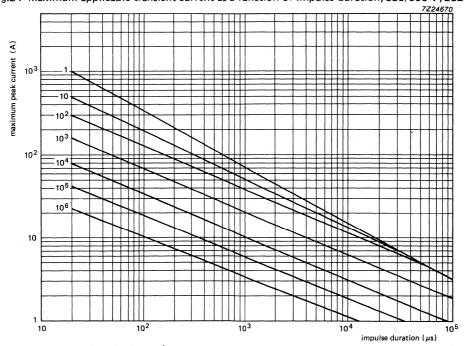


Fig.25 Maximum applicable transient current as a function of impulse duration, 14/40 V; 2322 595 series.

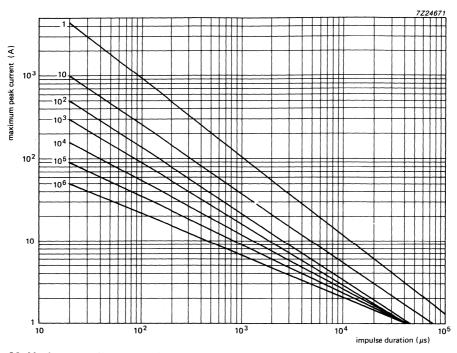


Fig.26 Maximum applicable transient current as a function of impulse duration, 50/300 V; 2322 595 series.

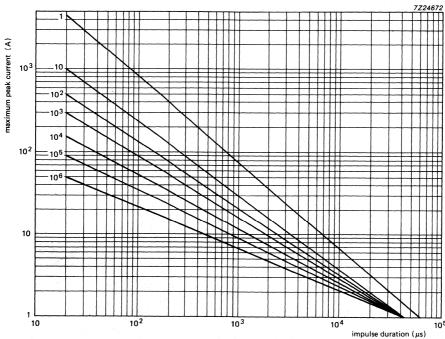


Fig.27 Maximum applicable transient current as a function of impulse duration, 385/550 V; 2322 595 series.

SENSORS

GENERAL

Light dependent resistors (LDRs) are made from cadmium sulphide containing no or very few free electrons when not illuminated. Its resistance is then quite high. When it absorbs light, electrons are liberated and the conductivity of the material increases. Cadmium sulphide is therefore a photoconductor. The approximate relationship between the resistance and illumination is:

$$R = A. L^{-\alpha}$$

where: $R = resistance in \Omega$

L = illumination in lux

A and α are constants.

The value of α depends on the cadmium sulphide used and on the manufacturing process. Values around 0,7 to 0,9 are quite common. The relationship between the resistance and the illumination is shown in the graph on the next page.

SPECTRAL RESPONSE

The resistors are only light dependent over a limited range of wavelengths. LDRs have their maximum response at about 680 nm.

TEMPERATURE DEPENDENCY

Electrons can be excited not only by photons but also by thermal agitation. The dark resistance is therefore not infinite at normal temperatures. It increases with the ambient temperature and can be decreased by cooling the device.

The temperature can also affect the resistance under illumination. At practical illumination levels and normal ambient temperatures the temperature coefficient is, however, very small and can be neglected.

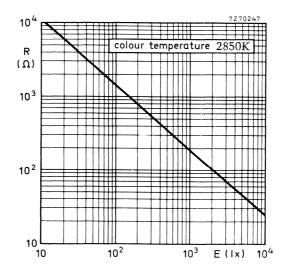
RECOVERY RATE

When an LDR is brought from a certain illumination level into total darkness, the resistance does not increase immediately to the dark value. The recovery rate is specified in $k\Omega/s$ and for current LDR types it is more than 200 $k\Omega/s$ (during the first 20 seconds starting at a light level of 1,000 lux).

The recovery rate is much greater in the reverse direction, e.g. going from darkness to an illumination level of 300 lux, it takes less than 10 ms to reach a resistance which corresponds with a light level of 400 lux.

SURVEY

minimum dark resistance	light resistar	nce	maximum dissipation at 40 °C	ambient temperature range	catalogue number
 10 MΩ	75 to	300 Ω			2322 600 93001
1 ΜΩ	max.	110 Ω	0.1 W	-30 to +60 °C	2322 600 93002
10 M Ω	75 to	300Ω	•		2322 600 94001
10 MΩ	75 to	300 Ω	والمراجعة والمناطقة والمراجعة والمراجعة والمناطقة المناطقة المناطقة المناطقة والمناطقة والمناطقة والمناطقة والمناطقة	ng ang gayang gayang kalaman na ara-kalaman MAN Manada na balan kalaman MAN MANADA NA SA SA SA SA SA SA SA SA S	2322 600 95001
10 M Ω	max.	250 Ω			2322 600 95003
1 M Ω	max.	110 Ω	0,2 W	$-20 \text{ to } +60 ^{\circ}\text{C}$	2322 600 95006
Recovery rate				min. 200 kΩ/s	and and the second s


DESCRIPTION

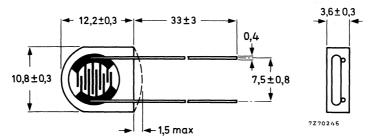
Disc shaped resistors made of cadmium sulphide. They are sealed and have two solid tinned copper wires.

APPLICATION

LDRs are intended for non-critical on/off applications, in which a lamp or a relay is operated either directly (low power) or via a suitable amplifier (high power) e.g. in toys.

TYPICAL CHARACTERISTICS

Resistance as a function of illumination.


LIGHT DEPENDENT RESISTORS

QUICK REFERENCE DATA

Dark resistance R _D 2322 600 93001 2322 600 93002	$>$ 10 M Ω $>$ 1 M Ω
Light resistance R _L 2322 600 93001 2322 600 93002	75 to 300 Ω < 110 Ω
Recovery rate	$>$ 200 k Ω/s
Maximum dissipation at 40 °C	0,1 W
Ambient temperature range	-30 to + 60 °C

MECHANICAL DATA

Outline drawing

Marking

None

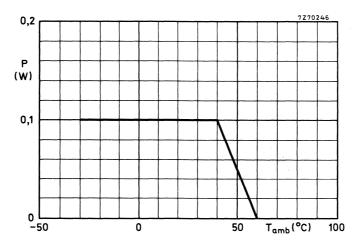
Mass

0,75 g approximately

Mounting

In any position by soldering the leads at least 10 mm from the body.

Robustness of terminations


Tensile strength 5 N
Bending 2,5 N

Soldering

Solderability max. 240 °C, max. 4 s
Resistance to heat max. 265 °C, max. 11 s

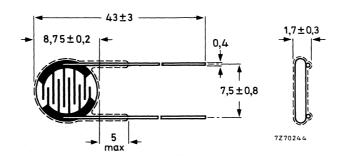
ELECTRICAL DATA

Dark resistance R _D 2322 600 93001 2322 600 93002	min. 10 M Ω min. 1 M Ω
Light resistance R _L 2322 600 93001 2322 600 93002	75 to 300 Ω max. 110 Ω
Recovery rate	min. 200 k Ω /s
Dissipation at 40 °C	max. 0,1 W
Capacitance at 1000 Hz	max. 8 pF
Repetitive peak voltage not exceeding max. dissipation	max. 150 V
Dielectric withstanding peak voltage between terminals and body	min. 200 V
Dielectric d.c. test voltage between terminals for 1 s in total darkness	200 V
Operating ambient temperature range	-30 to +60 °C

Permissible dissipation as a function of ambient temperature.

PACKAGING

250 per box


LIGHT DEPENDENT RESISTOR

QUICK REFERENCE DATA

Dark resistance RD	$>$ 10 M Ω
Light resistance R _L	75 to 300 Ω
Recovery rate	$>$ 200 k $\Omega/$ s
Maximum dissipation at 40 °C	0,1 W
Ambient temperature range	-30 to +60 °C

MECHANICAL DATA

Outline drawing

Marking

None

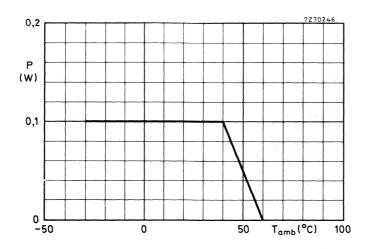
Mass

0,35 g approximately

Mounting

In any position by soldering the leads at least 10 mm from the body.

Robustness of terminations


Tensile strength 5 N
Bending 2,5 N

Soldering

Solderability max. 240 °C, max. 4 s
Resistance to heat max. 265 °C, max. 11 s

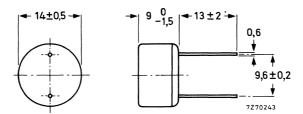
ELECTRICAL DATA

Dark resistance R _D	min. 10 M Ω
Light resistance R _L	75 to 300 Ω
Recovery rate	min. 200 k Ω /s
Dissipation at 40 °C	max. 0,1 W
Capacitance at 1000 Hz	max, 8 pF
Repetitive peak voltage, not exceeding max. dissipation	max. 150 V
Dielectric withstanding peak voltage between terminals and body	200 V
Dielectric d.c. test voltage between terminals for 1 s in total darkness	200 V
Operating ambient temperature range	$-30 \text{ to } + 60 ^{\circ}\text{C}$

Permissible dissipation as a function of ambient temperature.

PACKAGING

250 per box


LIGHT DEPENDENT RESISTORS

QUICK REFERENCE DATA

Dark resistance R _D	$>$ 10 M Ω 2322 600 95006 $>$ 1 M Ω
Light resistance RL	30 to 300 Ω
Recovery rate	$>$ 200 k $\Omega/$ s
Maximum dissipation at 40 °C	0,2 W
Ambient temperature range	−20 to +60 °C

MECHANICAL DATA

Outline drawing

Marking

Year and month of production is printed on the body in yellow.

Mass

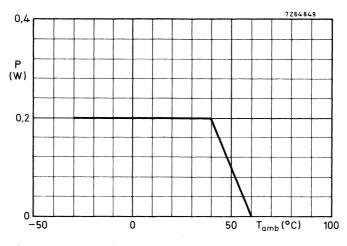
1,3 g approximately.

Mounting

In any position by soldering the leads at least 10 mm from the body.

Robustness of terminations

Tensile strength	10 N
Bensing	5 N


Soldering

Solderability	max. 240 °C, max. 4 s
Resistance to heat	max. 265 °C. max. 11 s

ELECTRICAL DATA

	resist	ance
catalogue number	dark value R _D	light value R _L
2322 600 95001	min. 10 M Ω	75 to 300Ω
95003	min. 10 M Ω	max. 250Ω
95006	min. 1 M Ω	max. 110Ω

Recovery rate	min. 200 k Ω/s
Dissipation at 40 °C	max. 0,2 W
Capacitance at 1000 Hz	max. 6 pF
Repetitive peak voltage not exceeding max. dissipation	max. 110 V
Dielectric withstanding peak voltage between terminals and case	150 V
Dielectric d.c. test voltage between terminals for 1 s in total darkness	150 V
Operating ambient temperature range	-20 to +60 °C

Permissible dissipation as a function of ambient temperature.

PACKAGING

125 per box

HUMIDITY SENSOR

QUICK REFERENCE DATA

Humidity range	10 to 90% R.H.	
Capacitance at +25 °C, 43% R.H. and 100 kHz	122 pF ± 15%	
Sensitivity between 12 and 75% R.H.	0,4 ± 0,05 pF/% R.H.	-
Frequency range	1 kHz to 1 MHz	
Maximum AC or DC voltage	15 V	
Storage humidity range	0 to 100% R.H.	
Ambient temperature range Operating Storage	0 to +85 °C -25 to +85 °C	
•		

APPLICATION

For humidity measurements in electronic hygrometers for domestic use, self-regulating air humidifiers, etc.

DESCRIPTION

This capacitive atmospheric humidity sensor consists of a non-conductive foil, which is covered on both sides with a layer of gold. The dielectric constant of the foil changes as a function of the relative humidity of the ambient atmosphere and, accordingly, the capacitance value of the sensor is a measure for relative humidity. The foil is clamped between contact springs and assembled in a plastic housing. It is provided with two connecting pins fitting printed-wiring boards with a grid pitch of 2,54 mm, provision is also made for fastening with 3 mm bolts. The characteristics are not affected by an incidental condensation of water on the sensor foil. It should not be exposed to acetone vapour, nor to chlorine vapours.

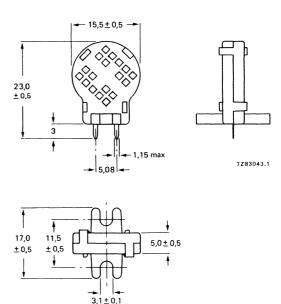


Fig. 1 Dimensions in mm.

MECHANICAL DATA

Outlines

See Fig. 1.

Marking PHILIPS H1

Mass 1,3 g approximately

Mounting

The item can be soldered directly onto a printed-wiring board or can be fastened with 3 mm bolts.

Soldering

Solderability $max. 240 \, ^{\rm o}$ C, $max. 4 \, s$ Resistance to heat $max. 240 \, ^{\rm o}$ C, $max. 4 \, s$

Robustness of terminations

Tensile strength 10 N

Impact

Free fall 1 m

Inflammability uninflammable

ELECTRICAL DATA

Humidity range 10 to 90% R.H. Capacitance at \pm 25 °C. 43% R.H., 100 kHz 122 pF \pm 15%

Capacitance at 123 G. 40% H.H., 100 KHZ

Tan δ at +25 °C, 100 kHz and 43% R.H. \leq 0.035

Sensitivity between 12 and 75% R.H. $0.4 \pm 0.05 \,\mathrm{pF/\%}$ R.H.

Frequency range 1 kHz to 1 MHz

Temperature dependence 0,1% R.H./K

Response time (to 90% of indicated R.H.

change at +25 °C, in circulating air)

between 10 and 43% R.H. <3 min.

between 43 and 90% R.H. <5 min.

Hysteresis (for R.H. excursion of 10 to 90 to 10%) 3% approximately

Maximum a.c. or d.c. voltage 15 V

Storage humidity range 0 to 100% R.H.

Ambient temperature range

Operating 0 to +85 °C

Storage -25 to +85 °C

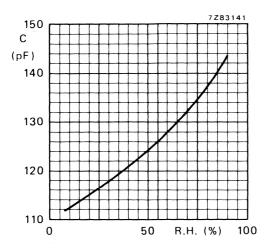


Fig. 2 Typical capacitance/relative humidity characteristic.

QUALITY LEVEL

Sampling and data evaluation for quality level according to MIL-STD-105D.

A.Q.L. 0,25% - Inoperatives

A.Q.L. 1% - Electrical

A.Q.L. 1,5% - Mechanical

PACKAGING

500 pieces per box.

. /

DATA HANDBOOK SYSTEM

DATA HANDBOOK SYSTEM

Our Data Handbook System comprises more than 60 books with specifications on electronic components, subassemblies and materials. It is made up of six series of handbooks:

INTEGRATED CIRCUITS

DISCRETE SEMICONDUCTORS

DISPLAY COMPONENTS

PASSIVE COMPONENTS*

PROFESSIONAL COMPONENTS**

MATERIALS*

The contents of each series are listed on pages iii to viii.

The data handbooks contain all pertinent data available at the time of publication, and each is revised and reissued periodically.

When ratings or specifications differ from those published in the preceding edition they are indicated with arrows in the page margin. Where application is given it is advisory and does not form part of the product specification.

Condensed data on the preferred products of Philips Components is given in our Preferred Type Range catalogue (issued annually).

Information on current Data Handbooks and how to obtain a subscription for future issues is available from any of the Organizations listed on the back cover.

Product specialists are at your service and enquiries will be answered promptly.

- * Will replace the Components and materials (green) series of handbooks.
- ** Will replace the Electron tubes (blue) series of handbooks.

INTEGRATED CIRCUITS

code	handbook title
IC01	Radio, audio and associated systems Bipolar, MOS
IC02a/b	Video and associated systems Bipolar, MOS
IC03	ICs for Telecom Bipolar, MOS Subscriber sets, Cordless Telephones
IC04	HE4000B logic family CMOS
IC05	Advanced Low-power Schottky (ALS) Logic Series
IC06	High-speed CMOS; PC74HC/HCT/HCU Logic family
IC07	Advanced CMOS logic (ACL)
IC08	ECL 10K and 100K logic families
IC09N	TTL logic series
IC10	Memories MOS, TTL, ECL
IC11	Linear Products
IC12	I ² C-bus compatible ICs
IC13	Semi-custom Programmable Logic Devices (PLD)
IC14	Microcontrollers NMOS, CMOS
IC15	FAST TTL logic series
Supplement to IC15	FAST TTL logic series
IC16	CMOS integrated circuits for clocks and watches
IC17	ICs for Telecom Bipolar, MOS Radio pagers Mobile telephones ISDN
IC18	Microprocessors and peripherals
IC19	Data communication products

DISCRETE SEMICONDUCTORS

current code	new code	handbook title	
S1	SC01	Diodes High-voltage tripler units	
S2a	SC02*	Power diodes	
S2b	SC03*	Thyristors and triacs	
S3	SC04	Small-signal transistors	
S4a	SC05	Low-frequency power transistors and hybrid IC power modules	
S4b	SC06	High-voltage and switching power transistors	
S 5	SC07	Small-signal field-effect transistors	
S6	SC08 SC09	RF power transistors RF power modules	
S7	SC10	Surface mounted semiconductors	
S8a	SC11*	Light emitting diodes	
S8b	SC12	Optocouplers	
S9	SC13*	PowerMOS transistors	
S10	SC14	Wideband transistors and wideband hybrid IC modules	
S11	SC15	Microwave transistors	
S15**	SC16	Laser diodes	
S13	SC17	Semiconductor sensors	
S14	SC18*	Liquid crystal displays and driver ICs for LCDs	

^{*} Not yet issued with the new code in this series of handbooks.

^{**} New handbook in this series; will be issued shortly.

DISPLAY COMPONENTS

current code	new code	handbook title
T8	DC01	Colour display components
T16	DC02	Monochrome monitor tubes and deflection units
C2	DC03*	Television tuners, coaxial aerial input assemblies
C3	DC04*	Loudspeakers
C20	DC05*	Wire-wound components for TVs and monitors

^{*} These handbooks are currently issued in another series; they are not yet issued in the Display Components series of handbooks.

PASSIVE COMPONENTS

current code	new code	handbook titie		
C14	PA01	Electrolytic capacitors; solid and non-solid		
		• • •		
C11	PA02	Varistors, thermistors and sensors		
C12	PA03	Potentiometers and switches		
C7	PA04*	Variable capacitors		
C22	PA05*	Film capacitors		
C15	PA06*	Ceramic capacitors		
C9	PA07*	Piezoelectric quartz devices		
C13	PA08*	Fixed resistors		

^{*} Not yet issued with the new code in this series of handbooks.

PROFESSIONAL COMPONENTS

current code	new code	handbook title
T1	*	Power tubes for RF heating and communications
T2a	* , * *	Transmitting tubes for communications, glass types
T2b	*	Transmitting tubes for communications, ceramic types
Т3	PC01**	High-power klystrons
T4	*	Magnetrons for microwave heating
T5	PC02**	Cathode-ray tubes
T6	PC03**	Geiger-Müller tubes
Т9	PC04**	Photo and electron multipliers
T10	PC05	Plumbicon camera tubes and accessories
T11	PC06	Circulators and Isolators
T12	PC07	Vidicon and Newvicon camera tubes and deflection units
T13	PC08	Image intensifiers
T15	PC09**	Dry reed switches
C8	PC10	Variable mains transformers; annular fixed transformers
	PC11	Solid state image sensors and peripheral integrated circuits

^{*} These handbooks will not be reissued.** Not yet issued with the new code in this series of handbooks.

MATERIALS

code	code	handbook title
C4 }	MA01*	Soft Ferrites
C16	MA02**	Permanent magnet materials
C19	MA03**	Piezoelectric ceramics

- * Handbooks C4 and C5 will be reissued as one handbook having the new code MA01.
- ** Not yet issued with the new code in this series of handbooks.

Philips Components – a worldwide group of companies

Argentina: PHILIPS ARGENTINA S.A., Div. Philips Components, Vedia 3892, 1430 BUENOS AIRES, Tel. (01) 541 -4261.

Australia: PHILIPS COMPONENTS PTY Ltd, 11 Waltham Street, ARTARMON, N.S.W. 2064, Tel. (02) 439 3322. **Austria:** ÖSTERREICHISCHE PHILIPS INDUSTRIE G.m.b.H.,

UB Bauelemente, Triester Str. 64, 1101 WIEN,

Tel. (0222) 60 101-820

Belgium: N.V. PHILIPS PROF. SYSTEMS – Components Div., 80 Rue Des Deux Gares, B-1070 BRUXELLES, Tel. (02) 52 56 111. Brazil: PHILIPS COMPONENTS (Active Devices): Av. Brigadeiro

PHILIPS COMPONENTS (Passive Devices & Materials): Av. Francisco Monteiro, 702-RIBEIRO PIRES-SP, Tel. (011) 459-8211

Canada: PHILIPS ELECTRONICS LTD., Philips Components, 601 Milner Ave., SCARBOROUGH, Ontario, M1B 1M8, Tel. (416) 292-5161

Chile: PHILIPS CHILENA S.A., Av. Santa Maria 0760, SANTIAGO, Tel. (02) 773816. Colombia: IPRELENSO LTDA., Carrera 21 No. 56-17, BOGOTA,

D.E., P.O. Box 77621, Tel. (01) 2497624.

Denmark: PHILIPS COMPONENTS A/S, Prags Boulevard 80,

PB1919, DK-2300 COPENHAGEN S, Tel. 01-54 11 33. Finland: PHILIPS COMPONENTS, Sinikalliontie 3, SF-2630

ESPOO HELSINKI 10, Tel. 358-0-50 261.

France: PHILIPS COMPOSANTS RTC-COMPELEC, 117 Quai du Président Roosevelt, 92134 ISSY-LES-MOULINEAUX Cedex, Tel (01) 40 93 80 00

Germany (Fed. Republic): VALVO, UB Bauelemente der Philips G.m.b.H., Valvo Haus, Burchardstrasse 19, D-2 HAMBURG 1, Tel. (040) 3296-0.

Greece: PHILIPS HELLENIQUE S.A., Components Division, No.

15, 25th March Street, GR 17778 TAVROS, Tel. (01) 4894339/4894 911.

Hong Kong: PHILIPS HONG KONG LTD., Components Div 15/F Philips Ind. Bldg., 24-28 Kung Yip St., KWAI CHUNG, Tel. (0)-42 45 121

India: PEICO ELECTRONICS & ELECTRICALS LTD Components Dept., Band Box Building, 254-D Dr. Annie Besant Rd., BOMBAY – 400025, Tel. (022) 4930311/4930590.

Indonesia: P.T. PHILIPS-RALIN ELECTRONICS, Components Div., Setiabudi II Building, 6th Fl., Jalan H.R. Rasuna Said (P.O. Box 223/KBY) Kuningan, JAKARTA 12910, Tel. (021) 51 79 95

Ireland: PHILIPS ELECTRONICS (IRELAND) LTD., Components Division, Newstead, Clonskeagh, DUBLIN 14, Tel. (01) 693355.

Italy: PHILIPS S.p.A., Philips Components, Piazza IV Novembre 3, I-20124 MILANO, Tel. (02) 6752.1.

Japan: PHILIPS K.K. Philips Components Division, Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO (108), Tel. (03) 740 5028

Korea (Republic of): PHILIPS ELECTRONICS (KOREA) LTD Components Division, Philips House, 260-199 Itaewon-dong,

Yongsan-ku, SEOUL, Tel. (02) 794-5011.

Malaysia: PHILIPS MALAYSIA SDN BHD, Components Div., 3
Jalan SS15/2A SUBANG, 47500 PETALING JAYA, Tel. (03) 7345511.

Mexico: PHILIPS COMPONENTS, Paseo Triunfo de la Republica, No 215 Local 5,Cd Juarez CHIHAUHAU 32340 MEXICO Tel. (16) 18-67-01/02

Netherlands: PHILIPS NEDERLAND, Marktgroep Philips Components, Postbus 90050, 5600 PB ÉINDHOVEN,

Tel. (040) 783749.

New Zealand: PHILIPS NEW ZEALAND LTD., Components Division, 110 Mt. Eden Road, C.P.O. Box 1041, AUCKLAND, Tel. (09) 605-914.

Norway: NORSK A/S PHILIPS, Philips Components, Box 1, Manglerud 0612, OSLO, Tel. (02) 68 02 00

Pakistan: PHILIPS ELECTRICAL CO. OF PAKISTAN LTD., Philips Markaz, M.A. Jinnah Rd., KARACHI-3, Tel. (021) 72 57 72

Peru: CADESA, Av. Pardo y Aliaga No. 695, 6th Floor, San Isidro,

LIMA 100, P.O. Box 5612, Tel. (014) 707080.

Philippines: PHILIPS INDUSTRIAL DEV. INC., 2246 Pasong Tamo, P.O. Box 911, Makati Comm. Centre

MAKATI-RIZAL 3116, Tel. (02) 868951 to 59.

Portugal: PHILIPS PORTUGUESA S.A.R.L., Av. Eng. Duarte

Pacheco 6, 1009 LISBOA Codex, Tel. (019) 683121.

Singapore: PHILIPS PROJECT DEV. (Singapore) PTE LTD. Components Div., Lorong 1, Toa Payoh, SINGAPORE 1231, Tel. 3502000

South Africa: S.A. PHILIPS PTY LTD. Components Division, JOHANNESBURG 2000, P.O. Box 7430.

Spain: PHILIPS Components, Balmes 22, 08007 BARCELONA, Tel. (03) 301 63 12

Sweden: PHILIPS Components, A.B., Tegeluddsvägen 1, S-11584 STOCKHOLM, Tel. (0)8-7821 000. Switzerland: PHILIPS A.G., Components Dept., Allmendstrasse 140-142, CH-8027 ZÜRICH,

Tel. (01) 488 22 11.

Taiwan: PHILIPS TAIWAN LTD., 150 Tun Hua North Road, P.O. Box 22978, TAIPEI, Taiwan, Tel. (02) 71 20500.

Thailand: PHILIPS ELECTRICAL CO. OF THAILAND LTD., 283 Silom Road, P.O. Box 961, BANGKOK,

Tel. (02) 233-6330-9.

Turkey: TÜRK PHILIPS TICARET A.S., Philips Components, Talatpasa Cad. No. 5, 80640

LEVENT/ISTANBUL, Tel. (01) 1792770.

United Kingdom: PHILIPS COMPONENTS LTD., Mullard House, Torrington Place, LONDON WC1E 7HD, Tel. (01) 580 6633.

United States: (Active Devices & Materials) AMPEREX Electronic Corporation, Providence Pike, SLATERSVILLE, R.I. 02876, Tel. (401) 762-9000.

(Colour picture tubes - Monochrome & Colour Display Tubes) PHILIPS DISPLAY COMPONENTS, 50 Johnston St., SENECA FALLS, N.Y. 13148, Tel. (315) 568-5881. (IC Products) SIGNETICS CORPORATION, 811 East Arques Avenue, SUNNYVALE, CA 94088-3409, Tel. (408) 991-2000. (Passive & Electromech. Dev.) MEPCO/CENTRALAB, INC 2001 West Blue Heron Blvd, RIVIERA BEACH, Florida 33404,

P.O. Box 10330, Tel. (407) 881-3200.

Uruguay: PHILIPS COMPONENTS, Coronel Mora 433, MONTEVIDEO, Tel. (02)70-4044.

Venezuela: MAGNETICA S.A., Calle 6, Ed. Las Tres Jotas, CARACAS 1074A, App. Post. 78117, Tel. (02) 2417509.

Zimbabwe: PHILIPS ELECTRICAL (PVT) LTD., 62 Mutare Road, HARARE, P.O. Box 994, Tel. 47211

For all other countries apply to: Philips Components Division, International Business Relations, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Telex 35000 phtcnl

@ Philips Export B.V. 1989

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright

The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights

Printed in The Netherlands

9398 162 80011

Philips Components

PHILIPS